

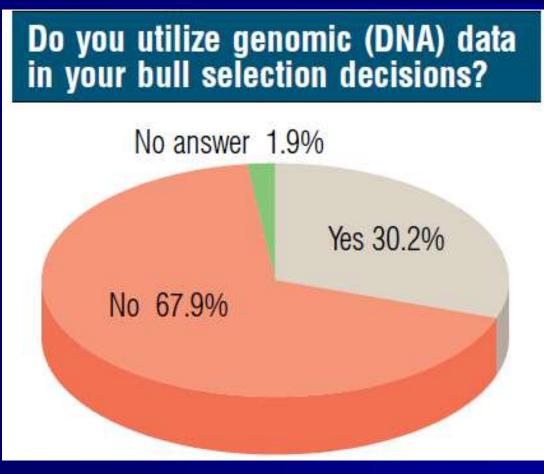
The economics of using DNA markers for bull selection in the beef seedstock sector

A.L. Van Eenennaam¹, J.H. van der Werf², M.E. Goddard³

¹ Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis

² University of New England Armidale, NSW, Australia

³ Victorian Department of Primary Industries and University of Melbourne, VIC, Australia



March 1, 2010 Beef Magazine Survey

http://beefmagazine.com/genetics/beef-asked-answered-20100301

Base = 635 (All Cow-Calf Operations)

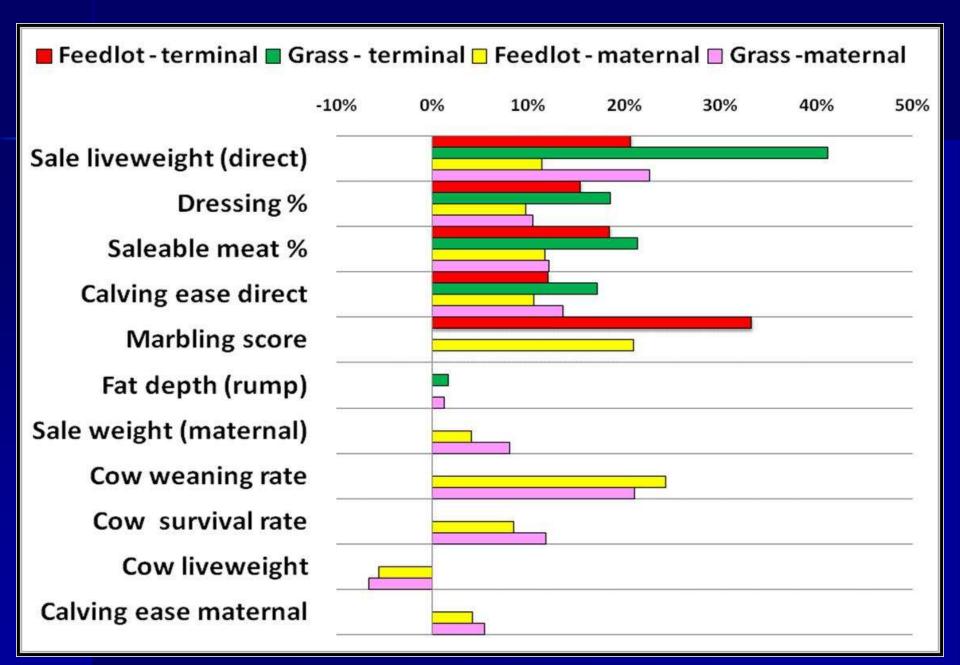
Van Eenennaam 7/14/2010

Animal Biotechnology and Genomics Education

		Compan	y
TRAIT	Α	B	С
Average Daily Gain	X	X	X
Net Feed Intake		X	
Dry matter intake		X	
Residual feed intake	X		
Tenderness	X	X	X
Calving Ease (Direct)		X	
Birth weight		X	
Weaning Weight		X	
Yearling Weight	X		
Calving ease (maternal)	X	X	
Milking Ability		X	
Heifer pregnancy rate	X		
Docility	X		
Stayability	X		
Carcass weight		X	
Backfat thickness	X	X	X
Ribeye area	X	X	
Marbling score	X	X	X
Yield Grade	X		X
Percent Choice	X		
COST	\$58	\$69-129	\$65/145

Objective

Estimate the value of using DNA test information to increase the accuracy of beef bull selection in a seedstock breeding program


- The expected returns from using a commercial sire sourced from a seedstock herd using DNA testing
- Additionally, the value of marker information in the selection of replacement stud males to be mated in a seedstock breeding program was also estimated.

The following seedstock operation was modeled

Parameters	Value
Number of stud cows	600
Number of bulls calves available for	267 (all get tested with DNA test)
sale/selection	
Number of stud bulls selected each year	8 (~3%; i = 2.27)
Number of bulls sold for breeding (annual)	125 (~50%; i = 0.8)
Maximum age of commercial sire	5 (4 breeding seasons)
Commercial cow:bull ratio	25
Number of commercial females	9225
Planning horizon	20 years
Discount rate for returns	7%
Number of live stud calves available per exposure	0.89
Stud cow:bull ratio	30
Cull for age threshold of cow	10
Age structure of breeding cow herd (2-10 yr)	0.2, 0.18, 0.17,0.15, 0.12, 0.09, 0.05, 0.03, 0.01
Bull survival (annual)	0.8
Age structure of bulls in stud herd (2-4 yr)	0.41, 0.33, 0.26
Age structure of bulls in commercial herd (2-5 yr)	0.34, 0.27, 0.22, 0.17

EXAMINED 4 BREEDING OBJECTIVES: PROFIT DRIVERS

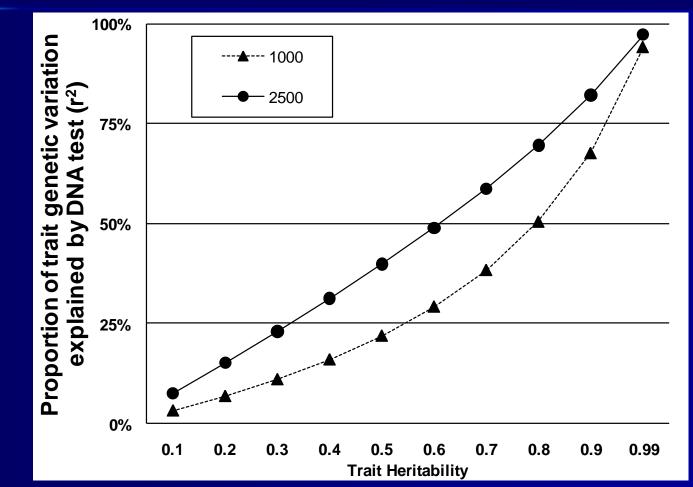
Materials and methods

- Selection index theory was used to predict the potential benefit of including DNA information in selection decisions.
- Information from DNA test information was modeled as a molecular breeding value (q_i) explaining a proportion (ρ) of the additive genetic variance (σ_{ai}^2) in trait i; V_{qi} = $\rho \cdot \sigma_{ai}^2$, as described by Lande and Thompson (1990).

Animal Biotechnology and Genomics Education

DNA panels explained a percentage of additive genetic variance set to either half ($\rho_i = \frac{1}{2}h_i^2$) or the full heritability ($\rho_i = h_i^2$) of all of selection criteria and traits in the breeding objective.

Objective Trait	Heritability	Selection criteria	Heritability
Sale liveweight – direct ^A	0.31	Birth weight	0.39
Sale liveweight – maternal ^A	0.04	200 d Weight	0.18
Dressing Percentage	0.33	400 d Weight	0.25
Saleable meat Percentage	0.56	600 d Weight	0.31
Fat depth (rump)	0.41	P8 fat	0.41
Marbling score	0.38	RIB fat	0.34
Cow weaning rate ^a	0.05	Eye Muscle Area	0.26
Cow survival rate ^a	0.03	Intramuscular Fat	0.25
Cow weight ^a	0.41	Scrotal Size	0.39
Calving ease – direct	0.10	Days to Calving	0.07
Calving ease – maternal	0.10	Mature Cow Weight	0.41

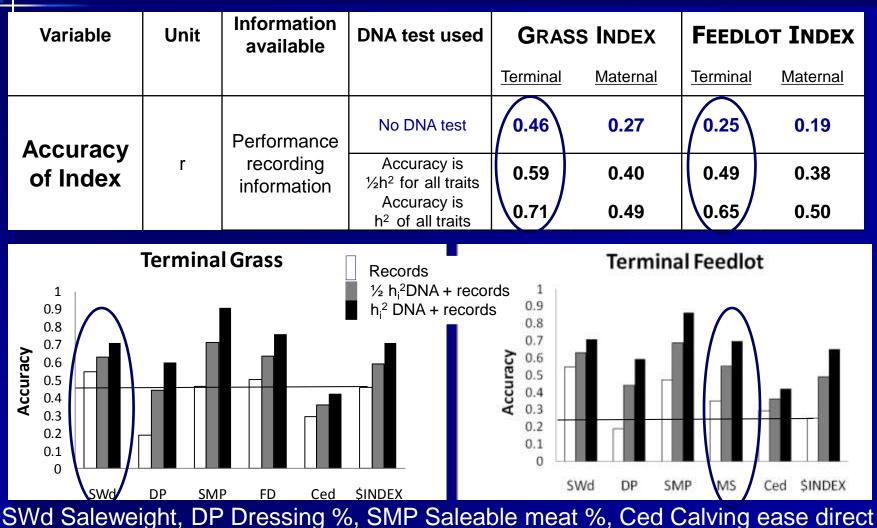

^a Predicted feed requirements accounted for in the calculation of economic value

Van Eenennaam 7/14/2010

Animal Biotechnology and Genomics Education

Effect of trait heritability on theoretical proportion of trait genetic variation explained by DNA tests trained in populations of 1000 (\blacktriangle) or 2500 (\bullet) individuals with phenotypic observations*.

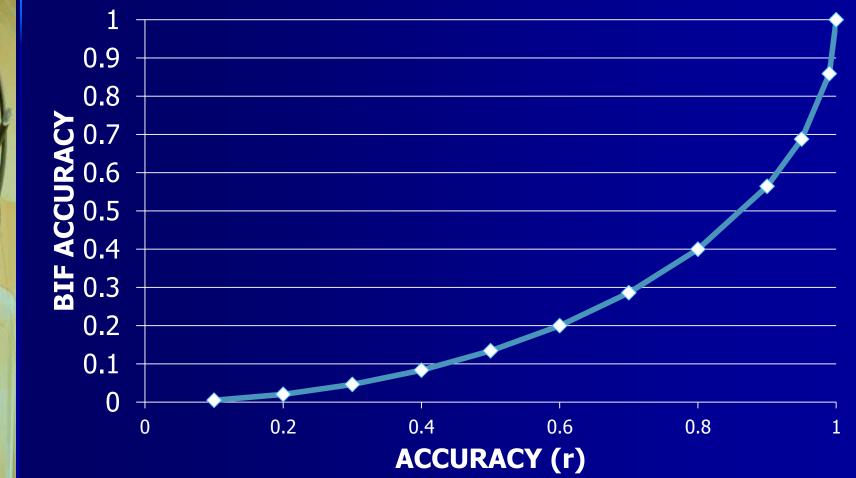
* Effective population size (N_e) = 100, length of bovine genome (L) = 30 M, effective number of loci (M_e) = 2NeL, and a normal distribution of QTL effects were assumed. Derived from the formula of Goddard (2009).



Materials and methods (continued)

- Indexes were constructed and index accuracies were calculated when information source included DNA test information from one of the two DNA panels **and** performance recording, over that derived from performance recording alone.
- Discounted gene flow methodology (Hill, 1974) was used to calculate the value derived from the use of superior bulls selected using DNA test information **and/or** performance recording. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator.

RESULTS: Improvements in index accuracy derived from DNA testing using tests associated with a percentage of additive genetic variation set to 1/2 h_i^2 or h_i^2 of all selection criteria and traits in the breeding objective

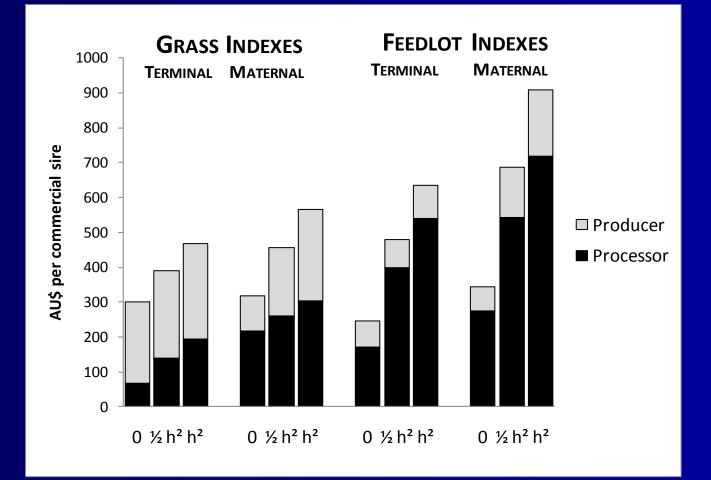


BIF Accuracy versus Accuracy (r)

Accuracy(r) =
$$\sqrt{1 - (1 \text{ ACC}_{BIF})^2}$$

$$ACC_{BIF} = 1 \sqrt{1 - r^2}$$

Results



Value of genetic improvement (AG) per bull derived from performance recording and DNA testing to increase the accuracy of COMMERCIAL BULL selection in a closed seedstock breeding program

Variable	Unit	Information available	DNA test used	G RASS INDEX		FEEDLOT INDEX	
				<u>Terminal</u>	Maternal	<u>Terminal</u>	<u>Maternal</u>
Value of ΔG in commercial sires selected from top half of stud herd	AU\$/bull	Performance Records	No DNA test	301	318	245	345
		Records + DNA test	Accuracy is ¹ / ₂ h ² for all traits	390	456	481	686
			Accuracy is h ² of all traits	467	567	636	910

Most of the value from DNA testing for the Feedlot indexes was derived by the processing sector (i.e. Dressing %, Saleable meat %, Marbling score)

Value of genetic improvement (AG) per bull derived from performance recording and DNA testing to increase the accuracy of SEEDSTOCK BULL selection in a closed seedstock breeding program

Γ	Variable	Unit	Information available	DNA test used	G RASS INDEX		FEEDLOT INDEX	
					<u>Terminal</u>	<u>Maternal</u>	<u>Terminal</u>	<u>Maternal</u>
١	/alue of ∆G in		Performance Records	No DNA test	301	318	245	345
00	commercial sires selected from top half of stud herd	AU\$/bull	Records + DNA test	Accuracy is 1/2h ² for all traits	390	456	481	686
ha				Accuracy is h ² of all traits	467	567	636	910
١	Value of ∆G in stud sires selected from top 3% of stud herd	AU\$/bull R	Performance Records	No DNA test	17899	15922	14579	16751
			Records +	Accuracy is 1/2h ² for all traits	23231	22698	28628	33633
3'			DNA test	Accuracy is h ² of all traits	27820	28121	37891	44661

Value of genetic improvement (AG) per DNA TEST derived from performance recording and DNA testing to increase the accuracy of COMMERCIAL AND SEEDSTOCK BULL selection in a closed seedstock breeding program

Variable	Unit	Information available	DNA test used	G RASS INDEX		FEEDLOT INDEX	
				<u>Terminal</u>	<u>Maternal</u>	<u>Terminal</u>	<u>Maternal</u>
Increased value derived from ΔG		Records +	Accuracy is ¹ / ₂ h ² for all traits	45	69	118	170
in commercial sires	DNA test	DNA test	Accuracy is h ² of all traits	83	124	196	282
Increased value			Accuracy is ¹ / ₂ h ² for all traits	160	203	421	506
derived from ΔG in stud sires			Accuracy is h ² of all traits	297	366	701	836

COMBINED VALUE PER DNA TEST

Variable	Unit	Information available	DNA test used GRASS INDEX FEEDI		GRASS INDEX		T INDEX
				Terminal	Maternal	<u>Terminal</u>	<u>Maternal</u>
Value of ΔG in		Performance Records	No DNA test	301	318	245	345
commercial sires selected from top	AU\$/bull	Records +	Accuracy is ¹ / ₂ h ² for all traits	390	456	481	686
half of stud herd		DNA test	Accuracy is h ² of all traits	467	567	636	910
Value of ΔG in stud		Performance Records	No DNA test	17899	15922	14579	16751
sires selected from top 3% of stud	AU\$/bull	Records + DNA test	Accuracy is ¹ / ₂ h ² for all traits	23231	22698	28628	33633
herd			Accuracy is h ² of all traits	27820	28121	37891	44661
Increased value	AU\$/	5/ Records + Cest DNA test	Accuracy is ¹ / ₂ h ² for all traits	45	69	118	170
derived from ΔG in commercial sires	DNA test		Accuracy is h ² of all traits	83	124	196	282
Increased value	AU\$/		Accuracy is ¹ / ₂ h ² for all traits	160	203	421	506
derived from ΔG in stud sires	DNA test		Accuracy is h ² of all traits	297	366	701	836
Total value per test to	AU\$/	Records +	Accuracy is ¹ / ₂ h ² for all traits	204	272	539	676
seedstock operator	DNA test	DNA test	Accuracy is h ² of all traits	380	490	897	1119

Van Eenennaam 7/14/2010

Animal Biotechnology and Genomics Education

To determine the value of a multi-trait DNA test you need to know

- 1. Selection objective being targeted
- 2. Heritability of the analyzed trait (h²)
- 3. Accuracy of genetic estimates already available to inform selection decisions
- 4. Genetic correlation between MVP and the trait (r_q)
- 5. Genetic variances and covariances for selection index calculations
- 6. Regression coefficient of phenotype on MBV (b)
- 7. Biological attributes and structure of stud and commercial herds
- 8. Selection intensity of replacement stud sires and bulls for sale (and females)
- 9. Number of calves per exposure
- 10. Type of herd (terminal, maternal)
- 11. Value derived from accelerated genetic progress
- 12. Sector where value is derived and how that is value is shared
- 13. Cost of test, and which animals are being tested
- 14. Planning horizon etc., etc., etc.

Implications

- Value of DNA testing will be enterprise dependent
- DNA information clearly has the potential to provide value to seedstock producers if it is meaningfully incorporated into national cattle evaluations
- It is difficult to make optimal selection decisions or even estimate the value of multi-trait DNA tests in the absence of information on their accuracy, and the incorporation of their target traits into breeding objectives and selection index calculations
- This will likely require the development of multi-trait selection indexes for breeding objectives of relevance to U.S. beef production systems.

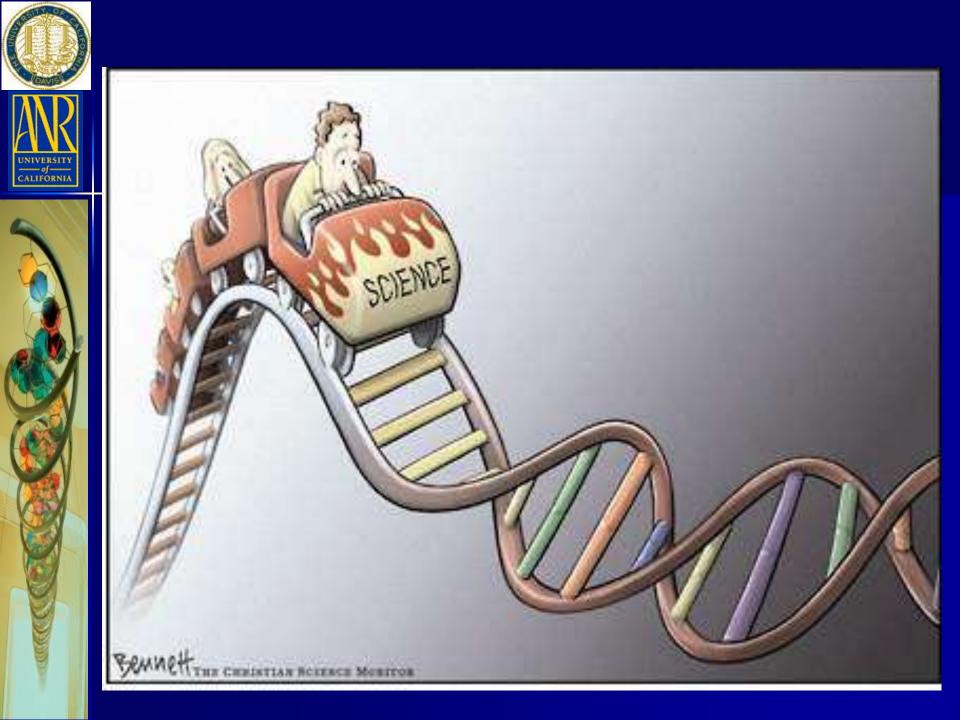
Acknowledgements

CoAuthors:

- Dr. Mike Goddard
- Dr. Julius van der Werf
 Additional thanks to Steve Barwick, Wayne
 - Upton, Jennie Pryce, and Ben Hayes

This project was supported by National Research Initiative competitive grant no. 2009-55205-05057 ("Integrating DNA information into beef cattle production systems") from the USDA National Institute of Food and Agriculture Animal Genome Program.

North West, Tasmania


Improvements in index accuracy derived from DNA testing using tests associated with a percentage of additive genetic variation set to $\frac{1}{2} h_i^2$ or h_i^2 of all selection criteria and traits in the breeding objective Shaded cells show accuracy of \$Index of DNA tests in the absence of performance data

Variable	Unit	Information available	DNA test used	GRASS INDEX		FEEDLOT INDEX	
				<u>Terminal</u>	Maternal	<u>Terminal</u>	<u>Maternal</u>
Accuracy		Performance recording information	No DNA test	0.46	0.27	0.25	0.19
			Accuracy is ½h ² for all traits	0.59	0.40	0.49	0.38
			Accuracy is h ² of all traits	0.71	0.49	0.65	0.50
of Index	I	DNA test only	No DNA test	0	0	0	0
			Accuracy is 1/2h ² for all traits	.45	.33	.44	.34
			Accuracy is h ² of all traits	.64	.46	.62	.48

Improvement in selection response (%) resulting from a DNA-test enabled increases in index accuracy as compared to performance recording alone, value of genetic gain (Δ G) in commercial and stud sires, and value derived when the DNA test explained a percentage of additive genetic variance set to the full heritability (ρ_i =h_i²) of just the selection criteria.

		Information	GRAS	GRASS INDEX		FEEDLOT INDEX	
Variable	Unit	available	Terminal	Maternal	Terminal	Maternal	
Selection response	%	Performance records		*	28	*	
improvement resulting from DNA testing		Records + DNA test	20%	26%	24%	41%	
Value of ΔG in	(AU\$/	Performance records	301	318	245	345	
commercial sires selected from top half of stud herd	bull)	Records + DNA test	363	396	306	480	
Value of ΔG in stud sires	(AU\$/ bull)	Performance records	17899	15922	14579	16751	
selected from top 3% of stud herd		Records + DNA test	21617	19724	18211	23110	
Increased value derived	(AU\$/	Performance records		æ	24		
from DNA testing commercial sires	DNA test)	Records + DNA test	31	39	30	67	
Increased value derived	(AU\$/	Performance records		i.	. 14		
from DNA testing stud sires	DNA test)	Records + DNA test	111	114	109	191	
Total value per DNA test	(AU\$/	Performance records		*	31		
to seedstock operator	DNA test)	Records + DNA test	143	153	139	258	

