DNA MARKER PANEL VALIDATION UPDATE BY NATIONAL BEEF CATTLE EVALUATION CONSORTIUM

National Colorado State University-Cornell University of Georgia Beef Cattle Evaluation Consortium

Alison L. Van Eenennaam^{*1}, R. Mark Thallman², Richard L. Quaas³, Kathy Hanford⁴, and E. John Pollak³

- ¹ Department of Animal Science, University of California, Davis, CA, USA;
 ² US Meat Animal Research Center, Clay Center, NE, USA;
 - ³ Department of Animal Science, Cornell University, Ithaca, NY, USA;
- 4 Departments of Statistics and Animal Science, University of Nebraska, Lincoln, NE, USA.

Home About NBCEC Research For Producers For Professionals Industry Links Contact Us

The National Beef Cattle Evaluation Consortium (NBCEC) is an organization of researchers, educators, producers and industry leaders focused on genetic evaluation of beef cattle. Its mission is to advance U.S. beef genetics, increase the sustainability and competitiveness of the beef industry, and provide consumers with affordable and healthy beef products. NBCEC shows this commitment through research, animal evaluation, genetic test validation, industry collaboration and outreach, and professional development.

<u>Current Projects</u> – NBCEC conducts comprehensive, innovative and science-based beef cattle genetic research. Learn about the variety of their current projects.

<u>Sire Selection Manual</u> – This comprehensive manual features a variety of NBCEC research and genetic technology that producers can apply to their farms and ranches

Genetic Test Validation – NBCEC provides independent, unbiased, third-party validation of genetic tests for the beef cattle industry. See a variety of test results and the validity of the claims.

BIF Annual Meeting – Attend the Beef Improvement Federation's Annual Research Symposium and Annual Meeting, April 30 – May 3 in Sacramento, CA.

Home Background Sample Populations Marker-Assisted Selection Glossary Commercial genetics (Bovigen) IGENITY MMI Genomics Ancillary Results

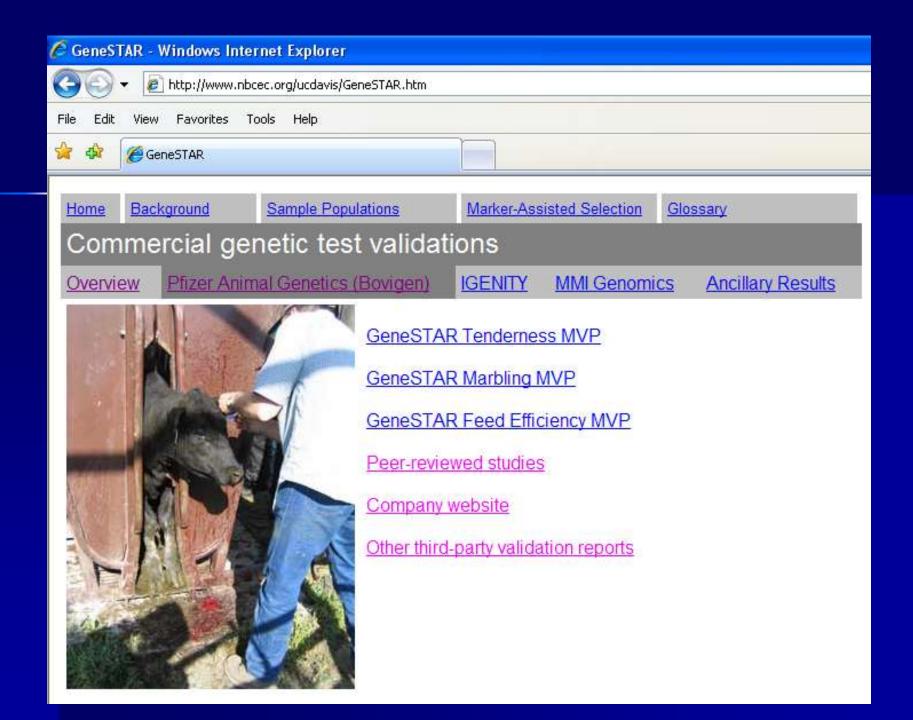
Home

Background

Sample Populations

Marker Assisted Selection

Glossary


The purpose of the NBCEC commercial DNA test validation is to independently verify associations between genetic tests and traits as claimed by the commercial genotyping company using phenotypes and DNA from reference cattle populations

The validation process is a partnership of the owners of DNA and phenotypes (e.g., breed associations) and genomics companies, facilitated by the NBCEC

<retur< th=""><th colspan="11"><return nbcec="" site<="" th="" the="" to=""></return></th></retur<>	<return nbcec="" site<="" th="" the="" to=""></return>										
Home	Background	Sample Populations	Marker-Ass	isted Selection	Glossary						
Com	Commercial genetic test validations										
<u>Overvi</u>	ew Pfizer Anin	nal Genetics (Bovigen)	IGENITY	MMI Genomi	cs Ancillary Results						

Summary of NBCEC validations for commercially-available DNA-tests for complex (quantitative or multigenic) traits in beef cattle (note: validations do not include tests for "simple" traits such as coat color, horned/polled, AM status etc.)

Company	Test Name	Trait	Date of validation
Igenity	Profile®	Fat Thickness	12/2008
www.igenity.com	Profile®	Marbling Score	12/2008
	Profile®	Quality Grade (% ≥ Choice)	12/2008
	Profile [®]	Rib Eye Area	12/2008
	Profile®	Yield Grade	12/2008
	Profile®	Average Daily Gain	12/2008
	Profile®	Tenderness	12/2007
	Profile®	Residual Feed Intake (RFI) (for Bos indicus influenced cattle)	12/2007
	Profile [®]	Residual Feed Intake (RFI) (for Bos taurus cattle)	6/2008
	Profile [®]	Dry matter intake (DMI) (for Bos indicus influenced cattle)	12/2007
	Profile®	Heifer Pregnancy Rate	
	Profile®	Stayability (longevity)	
	Profile®	Maternal Calving Ease	
	Profile®	Docility	
Pfizer Animal Genetics (Bovigen)	GeneSTAR [®] Tenderness MVP	<u>Tenderness</u>	2/2009
www.bovigen.com	GeneSTAR [®] Marbling MVP	% IMF (Feedlot cattle)	2/2009
	GeneSTAR [®] Feed Efficiency MVP	Net Feed Intake (NFI)	2/2009
MMI genomics www.metamorphixinc.com	Tru-Marbling™	Marbling Score and Quality Grade	
	Tru-Tenderness™	Tenderness	

<u>Home</u>	Background	Sample Populations	ample Populations Marker-Assisted Selection						
Commercial genetic test validations									
<u>Overvi</u>	ew Pfizer Anim	al Genetics (Bovigen)	IGENITY MMI Genomi	cs Ancillary Results					
<u>Summai</u>	ry <u>Test Claims</u> <u>T</u>	<u>Sample MV</u> est Details Populations Qu	<u>/P</u> <u>antiles</u> <u>Results</u>						

Summary

The GeneSTAR Tenderness MVP^[1] was found to be significantly associated with a decrease in Warner-Bratzler shear force (WBSF) measurements (i.e. increased tenderness) at 14 d postmortem in two Bos taurus sample populations. Additionally this test was found to be significantly associated with a decrease in Warner-Bratzler-shear force measurements at day 1 d postmortem, but not 14 d postmortem, in a Bos indicus-influenced population of 390 animals.

Significance of the GeneSTAR Tenderness MVP* (Molecular Value Prediction)

Population	TRAIT	Panel	b **	F	р	Ν
North American Bos taurus "Pfizer A" validation population	WBSF*** Tenderness (day 14 postmortem;kg)	Tenderness	0.665	4.2	0.021	462
North American Angus validation population	WBSF Tenderness (day 14 postmortem;lb)	Tenderness	0.328	14.33	0.00008	760
North American Bos indicus- influenced "Pfizer C" validation population	WBSF Tenderness (day 1 postmortem;kg)	Tenderness	0.358	6.227	0.007	390
	WBSF Tenderness (day 14 postmortem;kg)	Tenderness	0.037	0.189	0.332	388

* Molecular prediction values (MVP) were provided by Pfizer Animal Genetics based on their 56 SNP panel for Marbling Score, Tenderness and Net Feed intake (residual feed intake).

<u>Home</u>	Background	Sample Populations	Marker-Assisted Selection	Glossary						
Commercial genetic test validations										
Overvi	ew Pfizer Anim	al Genetics (Bovigen)	IGENITY MMI Genomi	cs Ancillary Results						
<u>Summa</u>	ry <u>Test Claims</u> <u>T</u>	Sample <u>M</u> est Details Populations Qu	<u>/P</u> iantiles <u>Results</u>							

Summary

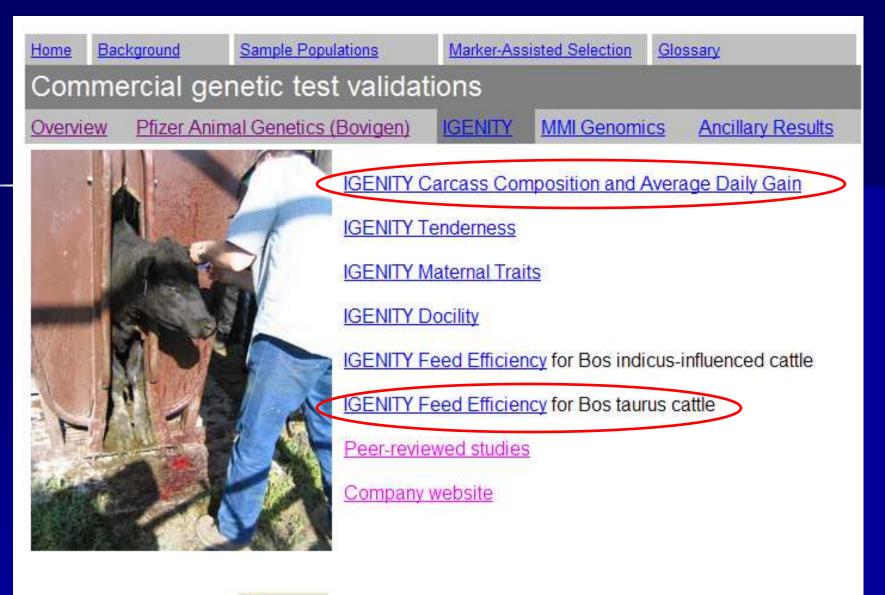
There was no significant association of this test with the trait of Marbling Score in any of the validation populations. However, the GeneSTAR Marbling $MVP^{[1]}$ was found to be significantly associated with percent intramuscular fat (%IMF) in a *Bos indicus*- influenced, and one of two *Bos Taurus* populations. Additionally this test was found to be significantly associated with the quality grade (% choice or better) in the *Bos indicus*- influenced population of 394 animals, but not the *Bos taurus* "B" validation population.

Population	TRAIT	Panel	b**	F	р	N
North American Bos taurus	Marbling score***	Marbling	-0.267	3.15	0.961	595
"Pfizer A" validation population	% IMF	Marbling	0.193	1.76	0.094	282
North American	Marbling score	Marbling	.120	1.1	0.147	723
Bos taurus "Pfizer B"	% Choice		-0.032	0.1	0.624	723
validation population	% IMF		0.312	5.26	0.011	785
North American	Marbling score		0.367	1.73	0.096	392
Bos indicus- influenced "Pfizer C"	% Choice	Marbling	0.276	3.68	0.028	392
validation population	% IMF		0.659	9.83	0.001	394

Significance of the GeneSTAR Marbling MVP* (Molecular Value Prediction)

* Molecular prediction values (MVP) were provided by Pfizer Animal Genetics based on their 56 SNP panel for Marbling Score, Tenderness and Net Feed intake (residual feed intake).

Home	Background	Sample Populations	Marker-Assisted Selection	<u>Glossary</u>					
Commercial genetic test validations									
<u>Overvi</u>	ew Pfizer Anim	al Genetics (Bovigen)	IGENITY MMI Genomi	cs Ancillary Results					
Summar	y <u>Test Claims</u> <u>T</u>	<u>Sample MV</u> est Details Populations Qu	/ <u>P</u> antiles <u>Results</u>						


Summary

The GeneSTAR feed efficiency MVP^[1] was found to be significantly and positively associated with residual feed intake (RFI) in a North American population of 671 *Bos taurus* cattle. No significant association was found between this MVP and feed efficiency in a North American population of 395 *Bos indicus*-influenced cattle.

Significance of the GeneSTAR Feed Efficiency MVP* (Molecular Value Prediction)

Population	TRAIT	Panel	b **	F	р	Ν
<i>Bos taurus</i> "Pfizer A" validation population	Residual Feed Intake (RFI;kg)***	Feed Efficiency	0.4	n/a	0.02	671
Bos indicus- influenced "Pfizer C" validation population	Residual Feed Intake (RFI;kg)	Feed Efficiency	-0.019	0.017	0.55	395

* Molecular prediction values (MVP) were provided by Pfizer Animal Genetics based on their 56 SNP panel for Marbling Score, Tenderness and Net Feed intake (residual feed intake).

Last updated 02/10/2009

<u>Home</u>	Background	Sample Popula	ations	Marker-Assis	sted Selection	Glossary				
Commercial genetic test validation										
Overvie	ew Pfizer Anima	al Genetics (E	<u> Bovigen)</u>	IGENITY	MMI Genomi	cs Ancillary Results				
Summar	y Test Claims	Test Details	Sample Populations	<u>MBV</u> Quantiles	. <u>Results</u>					

Igenity profile Summary Carcass Composition

() igenity

and Average Daily The IGENITY profile was found to be significantly associated with marbling Gain score, back fat thickness, quality grade, ribeye area, and yield grade carcass traits and average daily gain in a commercial predominately Bos taurus sample population of 1364 animals. This test was not evaluated on a Bos indicus-influenced or purebred Bos indicus population.

Significance* of the Igenity Molecular Breeding Values for **Carcass Traits and Average Daily Gain**

Breed	TRAIT	Panel	b**	F	р	N
	USDA Marbling Score	MBS	0.76	28.6	0.0000001	135 <mark>4</mark>
Commercial	Backfat Thickness	BFAT	0.81	12.46	0.0002	1354
Validation population	Quality Grade ¹ (% ≥ Choice)	% ≥ CHOICE	0.73	14.06	0.00009	1364
	Ribeye Area	REA	1.01	10.99	0.0005	1354
	Yield Grade	YG	<mark>1.16</mark>	21.98	0.000002	1354
	Average Daily Gain	ADG	0.61	14.69	0.00007	1364

* Molecular breeding values (MBVs) for each trait were provided by Igenity based on the various SNP panels for each trait.

Home	Background	Sample Populations	Marker-Ass	isted Selection	<u>Glossary</u>				
Commercial genetic test validations									
<u>Overvi</u>	ew Pfizer Anim	al Genetics (Bovigen)	IGENITY	MMI Genomi	cs Ancillary Results				
<u>Summar</u>	y <u>Test Claims</u>	Sample Test Details Population	<u>MBV</u> s <u>Quantile</u>	<u>s Results</u>					

IGENITY profile Feed Efficiency for Bos taurus cattle SUMMARY

The IGENITY TAURUS feed efficiency MBVs were inconsistently associated with residual feed intake in the validation populations. In two populations there was a significant positive association of the MBV with the trait (North American Bos Taurus, CRC Temperate), but in the remaining four populations there was no significant effect and in both Angus populations the estimated association was negative, meaning that the results were associated in the opposite direction.

TEST DATASET	Trait	PANEL	b	Р	Ν
TEMPERATE ¹ (CRC1)	RFI	TAURUS	0.309	0.04	~546
SHORTHORN ¹ (CRC)	RFI	TAURUS	0.393	0.17	~189
ANGUS (CRC) ¹	RFI	TAURUS	-0.426	0.95	~327
NORTH AMERICAN BOS TAURUS ²	RFI	TAURUS	0.351	0.005	~706
NORTH AMERICAN CHAROLAIS ³	RFI	TAURUS	0.022	.443	~393
NORTH AMERICAN ANGUS ³	RFI	TAURUS	-0.217	0.89	~436

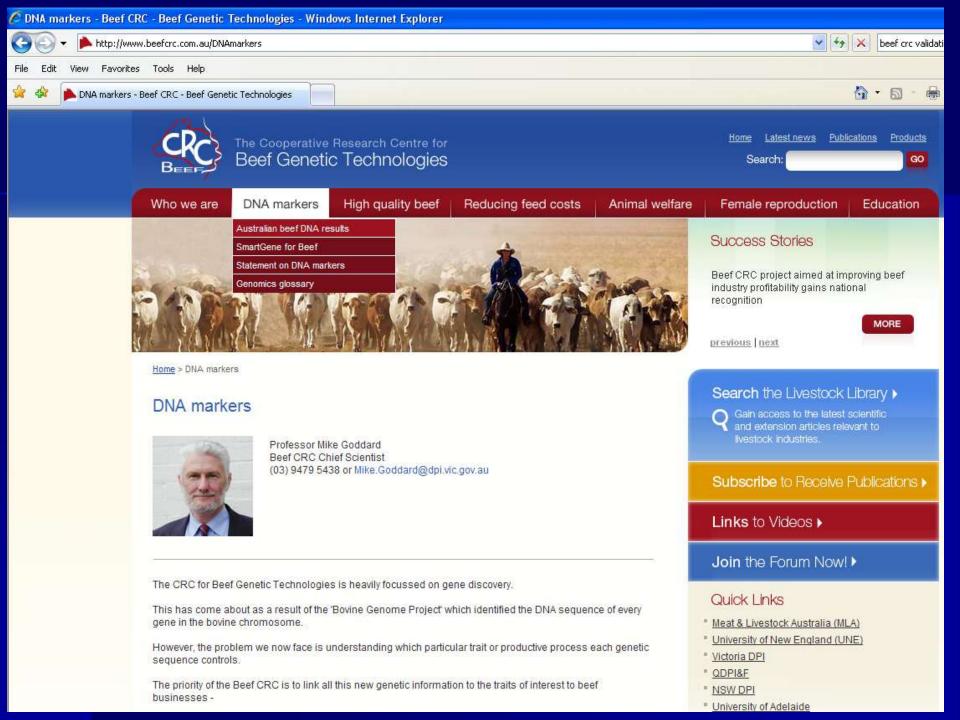
For further information on this validation contact Dr. John Pollak (607) 255-2846.

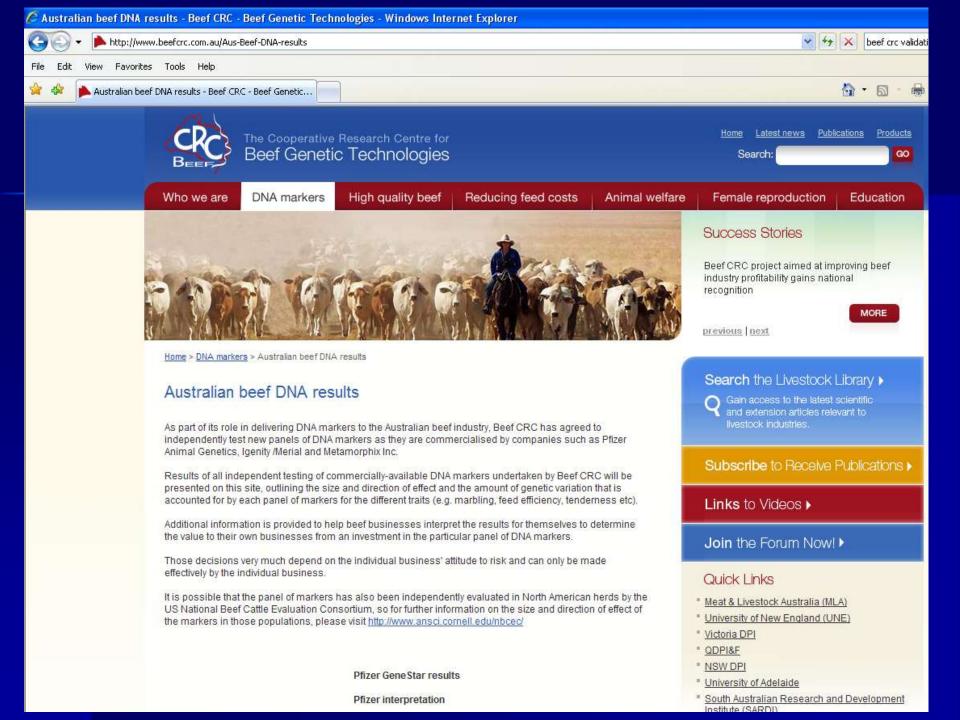
¹ Data analyses for these validation populations were performed by Dr. David Johnston, Animal Genetics and Breeding Unit, University of New England, Armidale, Australia (6/2008).

² Data analyses for this validation population was performed by Gordon VanderVoort, Dr. Matt Kelly, Duc Lu and Dr. Stephen Miller, University of Guelph (6/2008)

³ Data analyses for these validation populations were performed by Dr. Denny Crews, Agriculture and Agri-Food Canada (6/2008)

Publishing traditional EPDs and marker information separately, as is currently the case, is confusing and can lead to incorrect selection decisions when marker scores predict only a small proportion of the genetic variance.

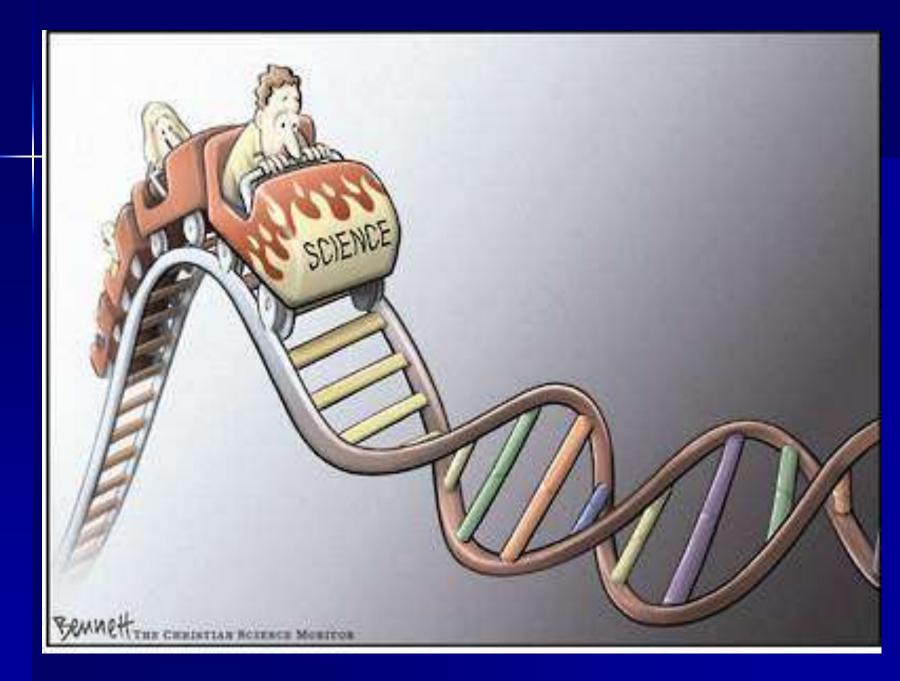



An increasingly relevant question in evaluating commercial DNA tests is "*What proportion of the additive genetic variation in the target trait is accounted for by the test?*"

Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests.

R.M. Thallman¹, K. J. Hanford², R. L. Quaas^{*3}, S. D. Kachman², R. J. Tempelman⁴, R. L. Fernando⁵, L. A. Kuehn¹, and E. J. Pollak³.
¹USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE, ²University of Nebraska, Lincoln, NE, ³Cornell University, Ithaca, NY, ⁴Michigan State University, East Lansing, MI, and ⁵Iowa State University, Ames, IA

Advancements in Genetic Prediction Technical Keynote Session, Tomorrow (Saturday) afternoon in Room 203, Convention Center



 $\boldsymbol{\wedge}$

Table 3: Bivariate animal model results using all phenotypes and GeneSTAR MVPs from the 56 marker pane Version January 2009. Results are from a data combining breeds and fitting breed in the model. The residual effect for the MBV was fixed at 0.001 and the residual correlation at 0.0. σ_P^2 = phenotypic variance of the observed data after fitting the models, \mathbf{h}^2 = heritability of the trait, note MVP have a heritability of very close to 1.0, $\mathbf{r_g}$ = genetic correlation between MVP and target trait, $\mathbf{r_g}^2$ = % genetic variance explained by marker, \mathbf{b} = regression coefficient of MVP on phenotype has been calculated as ratio of covariance over variance of MVP. Standard errors of estimates are in brackets.

Test	Trait	Data	Ν		σ^2_P	h ² (se)	r _g (se)	$\mathbf{r_g}^2$	b (se)
Pfizer MVP	IMF	1	Phenot =	3,594	2.035	0.39 (0.06)	0.054 (0.07)	0.3	0.255 (0.30)
Marbling			MVP =	703	0.035				
		2	Phenot =	3,524	0.978	0.37 (0.06)	0.064 (0.07)	0.4	0.231 (0.24)
			MVP =	668	0.027				
		3	Phenot =	876	0.767	0.23 (0.10)	0.011 (0.13)	0.0	0.028 (0.33)
			MVP =	253	0.026				
		4	Phenot =	878	0.717	0.37 (0.11)	0.121 (0.11)	1.5	0.415 (0.39)
			MVP =	225	0.022				
Pfizer MVP	MSA	1	Phenot =	1,454	0.281	0.35 (0.09)	0.131 (0.12)	1.7	0.218 (0.20)
Marbling	MS		MVP =	710	0.035				
		2	Phenot =	1,808	0.236	0.37 (0.08)	0.096 (0.08)	0.9	0.171 (0.15)
			MVP =	670	0.027				
		3	Phenot =	594	0.211	0.31 (0.13)	0.016 (0.14)	0.0	0.024 (0.22)
			MVP =	253	0.026				
		4	Phenot =	636	0.229	0.19 (0.11)	0.189 (0.17)	3.6	0.262 (0.23)
			MVP =	225	0.022				
Pfizer MVP	LDSF	1	Phenot =	3,322	0.433	0.08 (0.04)	0.170 (0.14)	2.9	0.109 (0.09)
Tenderness			MVP =	659	0.088				
		2	Phenot =	3,254	0.612	0.30 (0.06)	0.283 (0.08)	8.0	0.301 (0.09)
			MVP =	585	0.160				
		3	Phenot =	785	0.658	0.26 (0.10)	0.126 (0.14)	1.6	0.137 (0.16)
			MVP =	253	0.142				
		4	Phenot =	762	0.871	0.31 (0.10)	0.547 (0.13)	29.9	0.747 (0.18)
			MVP =	225	0.142				
Pfizer MVP	NFI	1	Phenot =	785	0.840	0.14 (0.11)	0.248 (0.15)	6.2	0.300 (0.13)
Feed Efficiency			MVP =	706	0.079				
		2	Phenot =	687	0.687	0.21 (0.13)	0.232 (0.11)	5.4	0.366 (0.15)
			MVP =	671	0.056				
		3	Phenot =	254	1.110	0.21 (0.25)	-0.044 (0.16)	0.2	-0.074 (0.27)
			MVP =	253	0.082				
		4	Phenot =	215	0.958	0.37 (0.26)	-0.053 (0.14)	0.3	-0.131 (0.33)
			MVP =	225	0.056				

2003

2008

2013

2020

• single marker/ single trait reported genotypes single marker accounted for very small amount of genetic variation limited adoption technology

oversold

 multimarker tests for a few traits reported in a variety of formats no tie between DNA test results and national genetic evaluation tests accounted for small proportion of additive genetic variation limited validation technology not in a form producers could use

 panels with hundreds of markers for many traits results reported in units of the trait incorporation of **DNA** information into national genetic evaluation DNA-based evaluations improve accuracy of EPDs large numbers of genotyped populations are

available for

validation

 universal marker panel used by worldwide beef cattle community mandatory, seamless submission of genotype data to national genetic evaluation/breed associations cost is low and industry uses DNA information for herd management

feedyard sorting,

and breeding.