

"Assessing the accuracy of genomic predictions: Results from the California commercial ranch project"

Alison Van Eenennaam

Animal Genomics and Biotechnology Cooperative Extension Specialist <u>alvaneenennaam@ucdavis.edu</u>

Kristina Weber

Ph.D. graduate student klweber@ucdavis.edu

Department of Animal Science University of California, Davis, CA animalscience.ucdavis.edu/animalbiotech

Animal Genomics and Biotechnology Education

BIF 4/20/12

<u>OUTLINE</u>

Overview of CA Commercial Ranch Project
Objectives of the study
Number of samples collected
Preliminary analysis of the data

"This project is supported by National Research Initiative Grant no. 2009-55205-05057 to AVE from the USDA National Institute of Food and Agriculture."

United States Department of Agriculture National Institute of Food and Agriculture

Research objectives of "Integrating DNA information into beef cattle production systems"

How is DNA information best incorporated into beef cattle production systems?

- Which of several incorporation methods is best?
- Which is feasible for commercial ranches to implement?
- Which provides economic benefit?

RESEARCH OBJECTIVE: Compare the current means of genetic prediction (bEPDs) with

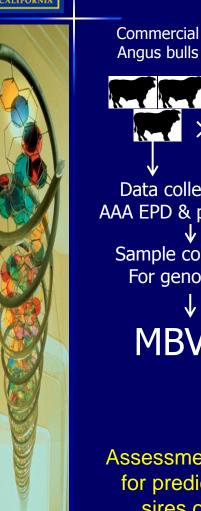
- 1. whole-genome scan genetic predictions (molecular breeding values, **MBVs**),
- 2. "commercial ranch" genetic evaluations (**rEPDs**) based on the actual performance of offspring under field conditions.

Extension objectives of "Integrating DNA information into beef cattle production systems"

The **extension objective** is to develop and deliver educational materials to a national audience on the integration of DNA information into beef cattle selection programs.

Includes the development of fact sheets, national educational programs including program at BIF 2009, brown bagger series, popular press articles, and NBCEC workshop entitled "*Integrating DNA information into beef cattle production systems*" – to be held in Kansas City, MO March 5th 2013

> National Colorado State University-Cornell University-University of Georgia-Iowa State University Beef Cattle Evaluation Consortium



California Commercial Ranch Project

2400 cows/ year K-A K-A K-A

Data collection: AAA EPD & pedigree

Sample collection: For genotyping

MBV

Progeny

Ranch and harvest data Collection Genotyping Paternity Determination

Assessment of DNA-enabled approaches for predicting the genetic merit of herd sires on commercial beef ranches

BIF 4/20/12

Four ranches:

- Cowley (900 cows)
- Kuck (500 cows)
- Mole-Richardson (700 cows) •
- UC Davis (300 cows) •

Approximately 120 Angus herd bulls, and 2,400 cows per year on project

United States Department of Agriculture National Institute of Food and Agriculture

Animal Genomics and Biotechnology Education

Location of 2011 presentations on data derived from CA commercial ranch project

BIF 4/20/12

Animal Biotechnology and Genomics Education

Photo taken in 1949 at Red Bluff Bull Sale, CA Generously provided by Cathy Maas from Crowe Hereford Ranch, Millville, CA.

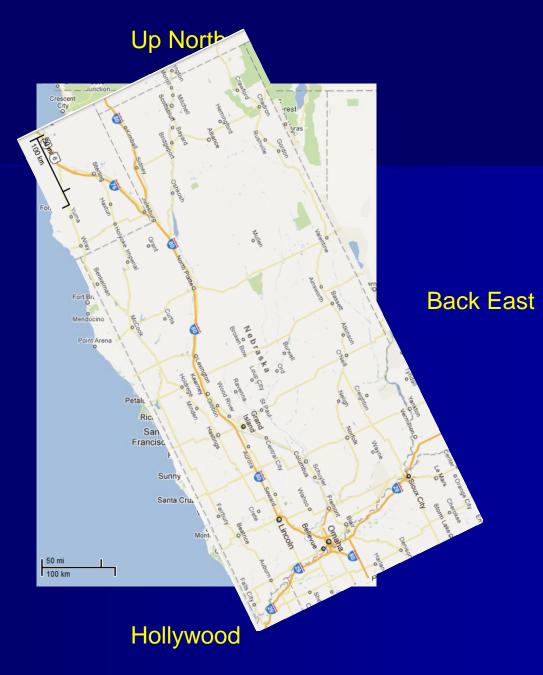
Animal Genomics and Biotechnology Education

BIF 4/20/12

Cowley Ranch

~20 bulls/season

Kuck Ranch


~10 bulls/season

Mole-Richardson Farms

UC Davis – Sierra foothills

S. DAVA

BIF 4/20/12

Pacific Ocean

Work flow and collaborators

- DNA on all bulls goes for whole genome scan collaboration with Jerry Taylor (UMC) and John Pollak (MARC)
- Molecular breeding value (MBV) prediction of genetic merit based on MARC training data set – collaboration with Dorian Garrick (IA) and U.S. Meat Animal Research Center
- Ranch data including sire groupings, birth dates and weaning weights on all calves, all EIDed, and "DNAed" for parentage determination – collaboration with Dan Drake and producers
- Steer feedlot in weights, treatments, and carcass traits, weight, grading information and meat sample collected in the processing plant – collaboration with Harris Ranch
- Compile data and compare three sources of genetic estimates: breed EPDs (bEPDs), commercial ranch EPDs (rEPDs), and MBVs

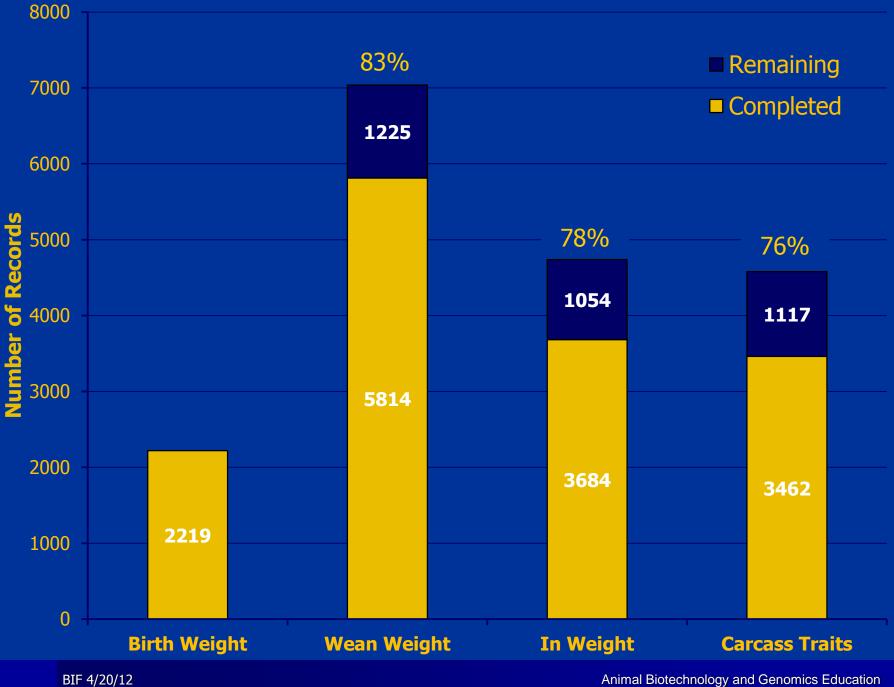
Sample and phenotype collection

Source Tracking And Reporting

R

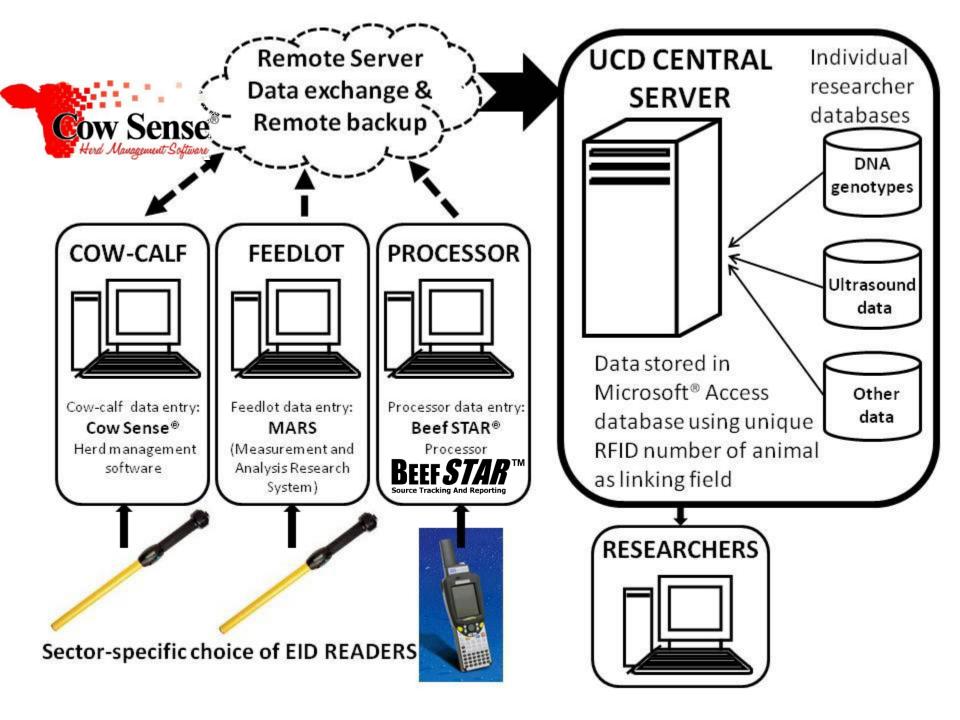
Management Software

ТΜ


G

0

Avenal


Calving Date	Ranches	ww	Feedlot In-Weight	Carcass	
Pre-project	2	~550 head	~460 head	~620 head	
Spring 2009	2	Fall 2009: ~600 head	Fall 2009/ Winter 2010: ~500 head	Spring/Summer 2010: ~450 head	
Fall 2009	4	Winter/Spring 2010: ~1500 head	Late Summer/ Fall 2010: ~900 head	Winter 2011: ~850 head	
Spring 2010	2	Fall 2010	Fall 2010/ Winter 2011	Spring/Summer 2011	
Fall 2010	4	Winter/Spring 2011	Late Summer/ Fall 2011	Winter 2012	
Spring 2011	2	Fall 2011	Fall 2011/ Winter 2012	Spring/Summer 2012	
Fall 2011	4	Winter/Spring 2012	Late Summer/ Fall 2012	Winter 2013	
Total records	4	7000 records >20 collection trips	4500 records Sent electronically	4500 records >35 collection trips	

Animal Biotechnology and Genomics Education

Honest to Goodness Beef

16277 S. McCall Ave.

Animal Genomics and Biotechnology Education

BIF 4/20/12

Assessing the Accuracy of Genomic Predictions: Results from the California Commercial Ranch Project

> Kristina Weber, PhD Candidate PD: Alison Van Eenennaam UC Davis

Background:

- Several sets of MBV for quantitative growth and carcass traits have been developed for beef cattle based on 50K SNP genotypes
 - Commercial tests: IGENITY (MBV_{IG}) and Pfizer Animal Genetics (MVP) →
 Angus Genetics Inc. → Genomic Enhanced EPDs.
 - Iowa State University and the University of Missouri-Columbia (ISU/UMC)
 - U.S. Meat Animal Research Center (**USMARC**; Clay Center, NE).
- At UCD, we have a population of Angus bulls purchased as yearlings with many progeny records for weaning weight, feedlot in-weight, and carcass traits which we can use to assess the genetic merit of these bulls in a Northern California environment

Objective:

In this study, the accuracies of 50Kderived MBV were assessed relative to ranch-based breeding values calculated from commercial progeny phenotypes of purebred Angus bulls.

Weber, K.L., D.J. Drake, J.F. Taylor, D.J. Garrick, L.A. Kuehn, R.M. Thallman, R.D. Schnabel, W.M. Snelling,
 E.J. Pollak, and A.L. Van Eenennaam. 2012. The accuracies of DNA-based estimates of genetic merit
 derived from Angus- or multi-breed beef cattle training populations. J. Anim. Sci. (submitted).

MBV Considered

DNA Test	Number of tested bulls						
		Trait					
	WW	WW ADG CW, MS, RE					
ISU/UMC	99		99				
MBV _{IG} MVP	29	29	29				
GPE 2K 2K _{AN} 2K _{AN}	121		121				
Total Bulls	121	29	121				

- ISU/UMC: Iowa State University and University of Missouri-Columbia, Angus, 50K, training: GBLUP with up to 3,570 records
 - MBV_{IG}: IGENITY, Angus, 384 SNP panel
- MVP: Pfizer, Angus, 50K, training: Bayesian model with up to 1,445 records
- 121 natural service bulls from four ranches were 50K genotyped.
- ISU/UMC predictions were available for 99 bulls at the time of publication.
- Due to the cost of purchasing DNA test results, IGENITY and Pfizer predictions were purchased for the 29 bulls with the highest number of progeny records.

MBV Considered

DNA Test	Number of tested bulls						
		Trait					
	WW	WW ADG CW, MS, RE					
ISU/UMC	99		99				
MBV _{IG} MVP	29	29	29				
GPE 2K 2K _{AN} 2K _{HH}	121		121				
Total Bulls	121	29	121				

- GPE: USMARC, Germplasm Evaluation
 Program Cycle VII and new GPE crossbred,
 50K, training: BayesCπ with up to 3,358
 phenotypic records
- 2K: USMARC, 2000 Bull Project multibreed, 50K, training: BayesCπ with up to 2,026 records
- 2K_{AN}: USMARC, Angus, 50K, training: BayesCπ with 373 records
- 2K_{HH}: USMARC, Hereford, 50K, training: BayesCπ with 463 records

Weber, K.L., R.M. Thallman, J.W. Keele, W.M. Snelling, G.L. Bennett, T.P.L. Smith, T.G. McDaneld, M.F. Allan, A.L. Van Eenennaam, and L.A. Kuehn. 2012. Accuracy of genomic breeding values in multi-breed beef cattle populations derived from deregressed breeding values and phenotypes. *J. Anim. Sci. (submitted)*.

Published estimates of MBV Accuracy

DNA Test	Reference	Accuracy(±SE where available)					
		Trait		C) M /	MC	DE	
Angus		WW	ADG	CW	MS	RE	
MBV _{IG}	Northcutt, 2011	0.45		0.54	0.65	0.58	
MVP	Pfizer Technical Summary 2010	0.53	0.52	0.50	0.49	0.49	
	Northcutt, 2011	0.52		0.48	0.57	0.60	
2K _{AN}	Weber et al., 2012	0.05		0.07	0.24	0.24	
Multi-br	eed						
GPE	Weber et al., 2012	0.12		0.35	0.23	0.25	
2K	Weber et al., 2012	0.24		0.12	0.23	0.35	
нн							
2K _{HH}	Weber et al., 2012	0.24			0.01	0.22	

Weber, K.L., R.M. Thallman, J.W. Keele, W.M. Snelling, G.L. Bennett, T.P.L. Smith, T.G. McDaneld, M.F. Allan, A.L. Van Eenennaam, and L.A. Kuehn. 2012. Accuracy of genomic breeding values in multi-breed beef cattle populations derived from deregressed breeding values and phenotypes. J. Anim. Sci. (submitted).

Population Structure and Relationship to Training Populations

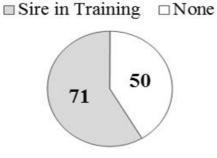
- Birth year ranged from 2000-2009
- The UCD bull population included:
 - 3 sets of full siblings
 - 22 sets of paternal half siblings
 - 1 pair of maternal half siblings
- These families ranged in size from 2-9, with siblings present on up to 3 different ranches

Population Structure and Relationship to Training Populations

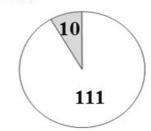
Relationship to training population ISU/UMC

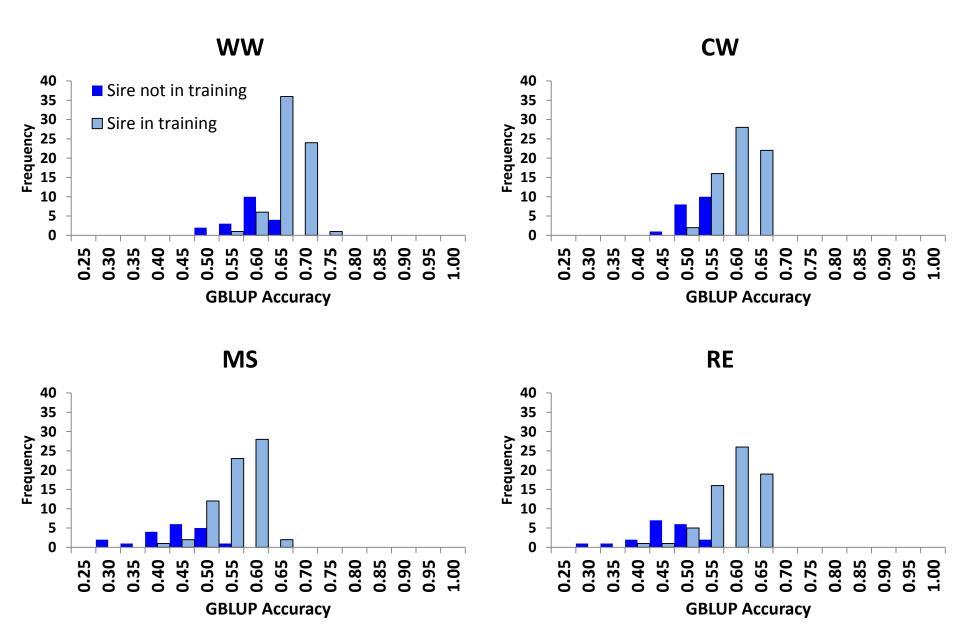
- Data available to AAA by the time of bull sale (i.e. no progeny data) was included in ISU/UMC training set for 87 UCD bulls.
- 79 bulls' sires were present in the ISU/UMC training population
- Of the remaining 20 bulls tested, 15 had grandsires and/or great-grandsires present in the ISU/UMC training population

2K


- 71 bulls' sires were present in the 2K training population
- Of the remaining 50 bulls, 44 had grandsires and/or greatgrandsires present in the 2K training population

GPE


• 10 UCD bulls were related to animals in the GPE training population through sharing a common sire


 $2K_{ALL}/2K_{AN}$

GPE □ Common Sire with GPE (Half-Sibling) □ None

Expected Accuracy of ISU/UMC Predictions

Number of UCD Bulls with Phenotyped Progeny and the Number of Progeny Per Bull

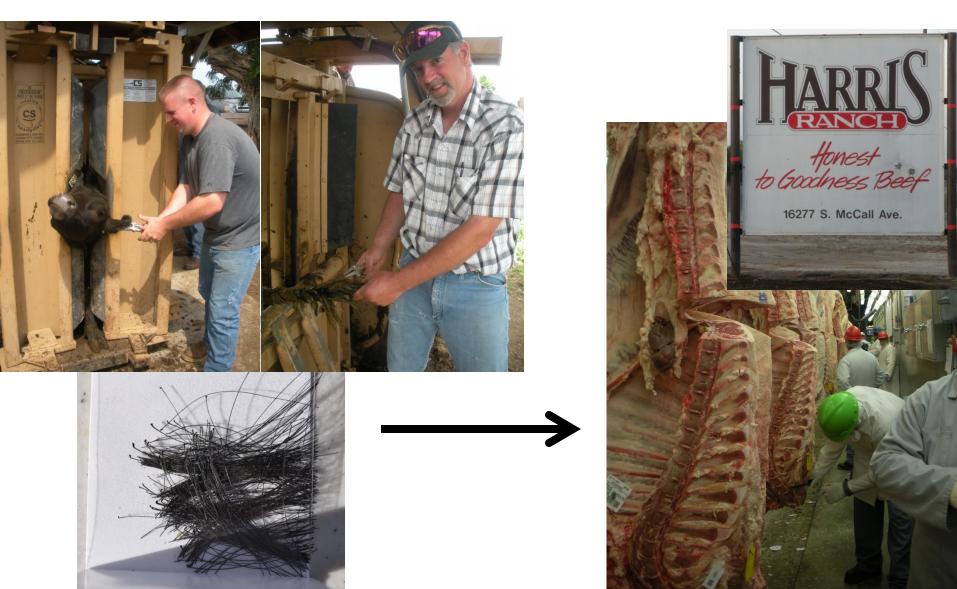
DNA Test	Mean progeny number (range)						
		Trait					
	WW ADG CW, MS, RE						
ISU/ UMC	44 (1-151)		26 (1-130)				
MBV _{IG} MVP	73 (21-151)	44 (15-105)	48 (11-130)				
GPE 2K 2K _{AN} 2K _{AN}	42 (1-151)		25 (1-130)				

 The bulls for which the IGENITY and Pfizer DNA tests were purchased had 31 more progeny WW records and 23 more carcass records than average for the complete dataset.

Number of UCD Bulls with Phenotyped Progeny and the Number of Progeny Per Bull

DNA Test	Mean progeny number (range)						
		Trait					
	WW ADG CW, MS, RE						
ISU/ UMC	44 (1-151)		26 (1-130)				
MBV _{IG} MVP	73 (21-151)	44 (15-105)	(11-130)				
GPE 2K 2K _{AN} 2K _{AN}	42 (1-151)		25 (1-130)				

 The bulls for which the IGENITY and Pfizer DNA tests were purchased had 31 more progeny WW records and 23 more carcass records than average for the complete dataset.


Progeny phenotypes

Trait	Angus sires	Progeny phenotypes	Units	Mean	SD	Min	Max
Weaning weight (WW)	129	4,702	lb	506.2	76.1	236.5	860.4
Feedlot average daily gain (ADG)	75	1,902	lb/day	3.17	0.57	1.17	6.31
Carcass weight (CW)	136	2,865	lb	739.2	70.6	497.0	999.0
Marbling score (MS)	136	2,864	*	5.83	0.95	3.00	9.33
Ribeye area (RE)	136	2,864	in ²	12.6	1.2	4.0	17.2

*3=traces, 4=slight, 5=small, 6=modest, 7=moderate, 8=slightly abundant, 9=moderately abundant

- WW was adjusted for age at weaning and age of dam prior to analysis
- ADG was estimated using rate of gain from feedlot in-weight to estimated feedlot final weight derived from CW, backfat thickness, and RE.
- Fixed effects:
 - Contemporary group: hys for WW, hys+feedlot lot for ADG, and hys+harvest lot for HCW, MS, and RE
 - Age for carcass traits
 - Sex for WW, HCW, and MS.
 - Fixed effects were tested for significance (p<0.01) as computed by ASREML from incremental Wald F statistics (Gilmour et al., 2009).

The importance of collecting meat samples and verifying live animal-carcass identification

The importance of collecting meat samples and verifying live animal-carcass identification

Error rates in abattoir reported IDs

- Average error rate of 10.8% across 5 consecutive cohorts from one ranch:
 - 3.5% in 165 head
 - 19.3% in 229 head
 - 6.4% in 167 head
 - 8.1% in 216 head
 - 16.5% in 140 head

• Reasons:

- Rail outs
- Inversions
- Failure to record animals, leading to a sequence of records offset by one or two records from the correct ID

Example

Gang Tag	Carcass ID	Expected live animal ID	Actual live animal ID
Not recorded	127		535
2951	128	535	670
2952	129	670	669
2953	130	669	513
2954	131	513	525
2955	132	525	632
2956	133	799	799

Linear Model for Estimating MBV Accuracy

Accuracy = genetic correlation between the MBV and the ranch-based estimate of the genetic merit of the bulls (Kachman, 2008).

For WW:

 $\begin{bmatrix} \mathbf{y} \\ \mathbf{MBV} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{y} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{y} \\ \mathbf{\mu}_{MBV} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{y} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{MBV} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{y} \\ \mathbf{u}_{MBV} \end{bmatrix} + \mathbf{Z}_{m} \mathbf{u}_{m} + \begin{bmatrix} \mathbf{e} \\ \mathbf{\varepsilon}_{MBV} \end{bmatrix},$ $\mathbf{var} \begin{bmatrix} \mathbf{u}_{y} \\ \mathbf{u}_{m} \\ \mathbf{e} \\ \mathbf{\varepsilon}_{MBV} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \sigma_{uy}^{2} & \mathbf{A} \sigma_{uy} \mathbf{u}_{MBV} & \mathbf{A} \sigma_{uy} \mathbf{u}_{m} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} \sigma_{uy} \mathbf{u}_{MBV} & \mathbf{A} \sigma_{uMBV}^{2} & \mathbf{A} \sigma_{uMBVum} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} \sigma_{uy} \mathbf{u}_{m} & \mathbf{A} \sigma_{uMBVum} & \mathbf{A} \sigma_{um}^{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} \sigma_{e}^{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} \sigma_{e}^{2} \end{bmatrix}$

For all other traits, the same model was used, with $Z_m u_m$ excluded.

Variance components

Parameter	Trait				
	WW	ADG	CW	MS	RE
$\sigma_A^2 \pm SE$	663±150	0.07±0.02	1556±286	0.384±0.05	0.42±0.07
σ _{AM} ±SE	199±281				
$\sigma_M^2 \pm SE$	843±294				
$\sigma_{E}^{2}\pm SE$	1994±107	0.18±0.02	2402±230	0.398±0.06	0.77±0.06
h _A ²±SE	0.179±0.04	0.267±0.07	0.393±0.07	0.509±0.07	0.350±0.06

Parameter	Trait				
	WW	ADG	CW	MS	RE
Mean BIF	0.28±	0.23±	0.27±	0.30±	0.25±
Accuracy of	0.01	0.03	0.02	0.02	0.02
Sire EBV±SE	(0.01-	(0.00-	(0.01-	(0.01-	(0.01-
(Min-Max)	0.55)	0.52)	0.63)	0.66)	0.61)
Mean BIF	0.20±		0.16±	0.20±	0.23±
Accuracy of	0.01		0.01	0.01	0.01
AAA EPD±SE	(0.05-		(0.05-	(0.05-	(0.05-
(Min-Max)	0.34)		0.25)	0.28)	0.31)

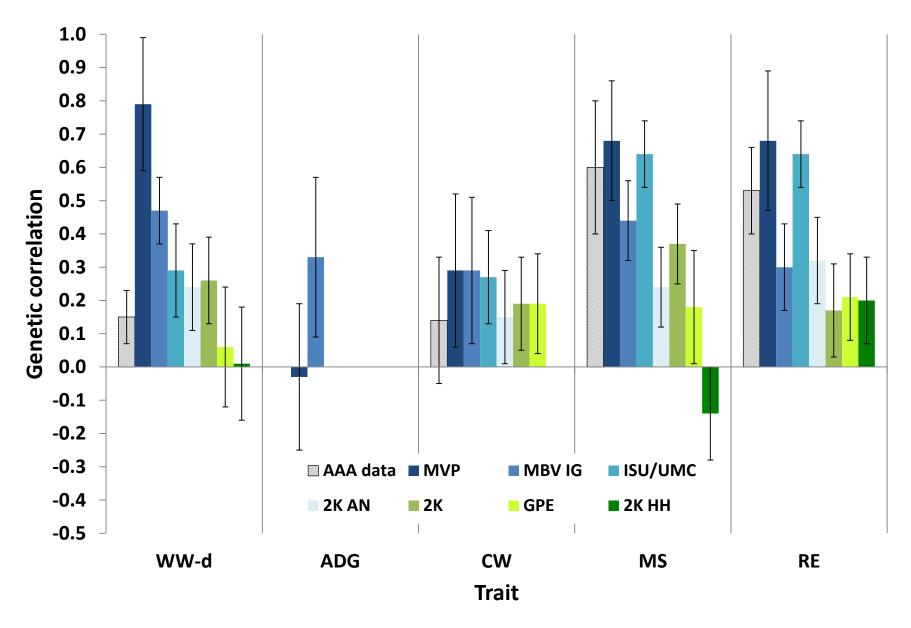
Young bulls that have been genotyped but don't have phenotyped progeny yet

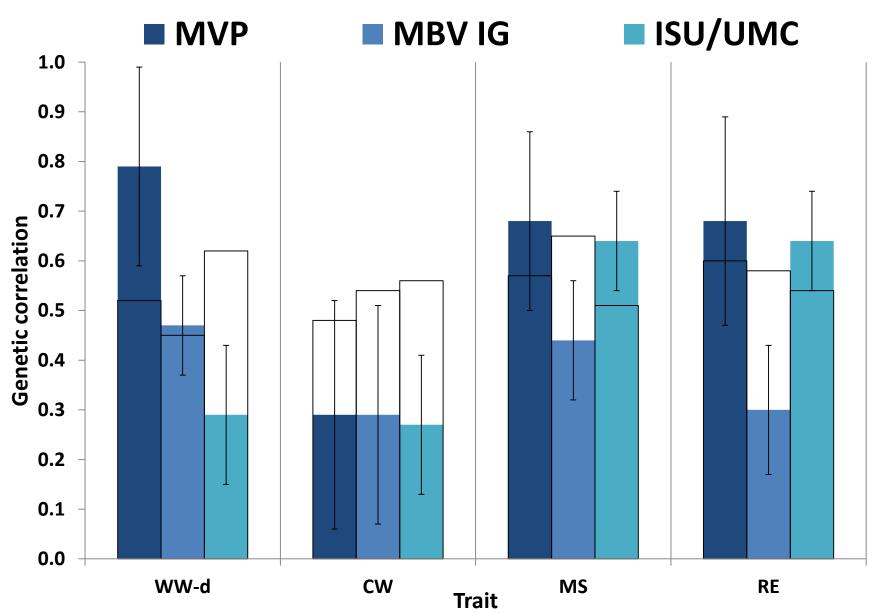
Parameter	Tra t				
	V/W	ADG	CW	MS	RE
Mean BIF	0.28±	0.23±	0.27±	0.30±	0.25±
Accuracy of	0.01	0.03	0.02	0.02	0.02
Sire EBV±SE	0.01-	0.00-	0.01-	0.01	(0.01)
(Min-Max)	0.55)	0.52)	0.63)	0.66)	0.61)
			0.4.6.		
Mean BIF	0.20±		0.16±	0.20±	0.23±
Accuracy of	0.01		0.01	0.01	0.01
AAA EPD±SE	0.05		0.05-	0.05	0.05
(Min-Max)	04)		0.25)	0.28)	0.31)

Pedigree only

Parameter	Trait				
	WW	ADG	CW	MS	RE
Mean BIF	0.28±	0.23±	0.27±	0.30±	0.25±
Accuracy of	0.01	0.03	0.02	0.02	0.02
Sire EBV±SE	(0.01-	(0.00-	(0.01-	(0.01-	(0.01-
(Min-Max)	0.55)	0.52)	0.63)	0.66)	0.61)
Mean BIF	0.20±		0.16±	0.20±	0.23±
Accuracy of	0.01		0.01	0.01	0.01
AAA EPD±SE	(0.05-		(0.05-	(0.05-	(0.05-
(Min-Max)	0.34		0.25	0.28	0.31)

+Bull's own phenotype


+ Many phenotyped progeny


Parameter	Trait				
	WW	ADG	CW	MS	RE
Mean BIF	0.28±	0.23±	0.27±	0.30±	0.25±
Accuracy of	0.01	0.03	0.02	0.02	0.02
Sire EBV±SE	(0.01-	(0.00-	(0.01-	(0.01-	(0.01-
(Min-Max)	0.55	0.52)	0.63	0.66)	0.61)
Mean BIF	0.20±		0.16±	0.20±	0.23±
Accuracy of	0.01		0.01	0.01	0.01
AAA EPD±SE	(0.05-		(0.05-	(0.05-	(0.05-
(Min-Max)	0.34)		0.25)	0.28)	0.31)

	Number of bulls	Accuracy±SE				
		WW-d	ADG	CW	MS	RE
AAA data	120	0.15±0.08		0.14±0.19	0.60±0.20	0.53±0.13

	Number of bulls	Accuracy±SE				
		WW-d	ADG	CW	MS	RE
AAA data	120	0.15±0.08		0.14±0.19	0.60±0.20	0.53±0.13
ISU/UMC	99	0.29±0.14		0.27±0.14	0.64±0.10	0.64±0.10
MBV _{IG}	29	0.47±0.20	0.33±0.22	0.29±0.23	0.44±0.18	0.30±0.21
Μνρ	29	0.79±0.10	-0.03±0.24	0.29±0.22	0.68±0.12	0.68±0.13
2K _{AN}	121	0.24±0.13		0.15±0.14	0.24±0.12	0.32±0.13

	Number of bulls	Accuracy±SE				
		WW-d	ADG	CW	MS	RE
AAA data	120	0.15±0.08		0.14±0.19	0.60±0.20	0.53±0.13
ISU/UMC	99	0.29±0.14		0.27±0.14	0.64±0.10	0.64±0.10
MBV _{IG}	29	0.47±0.20	0.33±0.22	0.29±0.23	0.44±0.18	0.30±0.21
Μνρ	29	0.79±0.10	-0.03±0.24	0.29±0.22	0.68±0.12	0.68±0.13
2K _{AN}	121	0.24±0.13		0.15±0.14	0.24±0.12	0.32±0.13
GPE	121	0.06±0.18		0.19±0.15	0.18±0.17	0.21±0.13
2K _{ALL}	121	0.26±0.13		0.19±0.14	0.37±0.12	0.17±0.14
2K _{HH}	121	0.01±0.17			-0.14±0.14	0.20±0.13

Pairwise Genetic Correlations between MBV

	ISU/UMC x MVP	ISU/UMC x MBV _{IG}	MVP x MBV _{IG}
WW	0.70±0.13	0.49±0.14	0.31±0.17
ADG			0.15±0.18
CW	0.64±0.10	0.51±0.12	0.42±0.16
MS	0.77±0.13	0.69±0.26	0.43±0.15
RE	0.64±0.10	0.50±0.13	0.48±0.15

High correlations observed between ISU/UMC, MVP and MBV_{IG} for all traits except ADG.

Conclusions

- MBV accuracies for commercially available tests were similar to those reported for the Angus breed but for traits in which ranch EPD were not well correlated with AAA EPD, there was a trend of lower than expected MBV accuracy
- MBV that were not derived from Angus were less accurate than Angus-derived MBV

Future Directions

- Illumina BovineHD genotyping and imputation up to HD from 50K for the training and assessment populations has begun
- Preliminary results suggest that there is some improvement in multi-breed MBV accuracy when training on HD genotype data
- Finish collecting all of the data and graduate!

USDA Integrated Grant Collaborators "Integrating DNA information into Beef Cattle Production Systems"

Producer Collaborators:

- Jack Cowley, Cowley Ranch, Siskiyou County, CA
- Dale, Greg, and Richard Kuck, Kuck Ranch, Siskiyou County, CA
- Matt Parker, Mole-Richardson Farms, Siskiyou County, CA
 Processor Collaborators:
- Harris Ranch Beef Company, Coalinga, CA
- Los Banos Abattoir, Los Banos, CA

Software Collaborators:

- Jim Lowe, Cow Sense Herd Management Software, NE
- Other Contributors/Collaborators
- Dr. Darrh Bullock, Extension Professor, University of Kentucky, KY
- Dr. Jerry Taylor, University of Missouri, MO
- Dr. Daniel Drake, University of California Cooperative Extension Livestock Advisor, CA

National Colorado State University-Cornell University-University of G

Beef Cattle Evaluation

Consortium ^J

- Dr. Dorian Garrick, Professor, Iowa State University, IA
- Dr. John Pollak, US Meat Animal Research Center, Clay Center, NE
- Dr. Larry Kuehn, US Meat Animal Research Center, Clay Center, NE
- Dr. Mark Thallman, US Meat Animal Research Center, Clay Center, NE
- Dr. Warren Snelling, US Meat Animal Research Center, Clay Center, NE
- Dr. Matt Spangler, University of Nebraska, NE
- Dr. Bob Weaber, Kansas State University, KS

BIF 4/20/12