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Phenotyping animals is so much 
more fun than phenotyping plants… 
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Relative to plants – animal 
breeders really have it hard 

 Long generation interval 

 Cannot self (at least domestic livestock can’t!) 

 Have limited family sizes (often one offspring/yr) 

 Cannot make RILs easily in domestic livestock 

 Certainly can’t make double haploids (except fish) 

 Expensive to phenotype 

 Can’t measure milk production on bulls 

 Can’t indiscriminately discard unwanted ones 

 Most traits seem to obey infinitesimal model 
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But the end product is so 
much more satisfying! 

Van Eenennaam BWG 2/12/2014 
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Overview 

 Introduction to animal breeding 

 Genomic selection  

 Practical questions for breeders 
– Dairy Industry as a genomic selection success story 

– Beef Industry as an “opportunity for improvement” 

 What does the future hold 
 

Note: I have drawn a lot of my material from published literature and would 
highly recommend you read the references listed at the bottom of the slide 
to more fully understand this brief overview of complex concepts.  

Van Eenennaam BWG 2/12/2014 
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Any technology that can modify 
components of the breeders equation 

can accelerate genetic gain 

 

ΔG =  intensity of selection  X 
 

     accuracy of selection X 
 

          stand. dev. genetic variation 
 

                 generation interval 
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Animal breeders have been genetically 
modifying animals for faster growth and 
improved feed conversion for many years  

Havenstein, G., Ferket, P. and Qureshi, M. (2003). Growth, livability, and feed conversion of 1957 versus 2001 
broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82, 1500-1508. 
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Pure Lines 

Great Grandparent 

Grandparent 

Parent 

Broilers 

Thousands of 

birds 

Tens of thousands of birds 

10,000,000 birds 

400,000,000 birds 

45,000,000,000 birds 

3-4 years 

1 Female 

23.4 Females 

725 Females 

24,809 Females 

3,064,000 Broilers 

One female broiler hen generates over 3 
million direct genetic descendants  

Van Eenennaam, A.L., K. A. Weigel, A. E. Young, M. A. Cleveland, and J. C. M. Dekkers 2014.  
Applied Animal Genomics: Results from the Field.  Annual Review of Animal Biosciences. 2:105-139. 
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Holstein - 
Dairy 

Angus - 
Beef 
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MILK 

MEAT 
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EPD = expected 
progeny difference 
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 Meat Tenderness 

 Quality Grade (Marbling) 

 Beef Cattle Feed Efficiency 

 Meat Yield 

 Disease Resistance 

 Dairy Form 

 Milk and Milk Component Yield 

Before 2010: Marker-assisted 
selection using 1-100 SNPs  

Van Eenennaam BWG 2/12/2014 
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What was wrong with this 
MAS model?  

 Problem with traditional Marker-assisted selection 
(MAS) approaches is the effect of individual 
quantitative trait loci (QTL) on complex traits, such 
as yield, are likely to be small.  

 A large number of QTL are necessary to explain the 
genetic variation in these traits 

 The usefulness of information from a sparse marker 
map in outbreeding species is also limited because 
the linkage phase between the marker and the QTL 
must be established for every family 

Van Eenennaam BWG 2/12/2014 



Animal Biotechnology and Genomics Education  

Genomic selection 
  Alternative is to trace all segments of  

the genome with markers 
 

 Divide genome into chromosome 

segments based on marker intervals 

 Capture all QTL = all genetic variance 

 Marker density must be sufficiently high to 
ensure that all QTL are in linkage disequilibrium 
(LD) with a SNP marker 

Van Eenennaam BWG 2/12/2014 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 
2001. Prediction of Total Genetic Value Using Genome-
Wide Dense Marker Maps. Genetics, Vol. 157, 1819-1829 
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I think there's a world market for about five 
computers. 

Thomas J. Watson, chairman of the board of IBM. 1943 
 

There is no reason anyone would want a 
computer in their home. 

Ken Olson, president of Digital Equipment Corp. 1977 
 
 

The cost for a genome scan (defined as 18 
chromosomes* 7 markers (i.e. 126 

markers!) * $4/marker) = $504 
Ben Hayes and Mike Goddard, 2003.  Evaluation of marker assisted selection in 

pig enterprises. Livestock Production Science 81:197-211. 

Wrong Expert Predictions 
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Potential benefits of genomics are 
greatest for economically-
important traits that: 

 Are difficult or 
expensive to measure 

 Cannot be measured 
until late in life or after 
the animal is dead 

 Are not currently 
selected for because 
they are not routinely 
measured and so there 
are no selection 
criteria available 

 Have low heritability  

Yep, looks like 
all of ‘em were 
susceptible 

Van Eenennaam BWG 2/12/2014 
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High-throughput genotyping 
technology enabled the development 
of high density “SNP chips”  

The sequencing of the bovine genome 
allowed for the development of a 50,000 
SNP chip, then the 800,000 SNP chip; and 
now whole genome sequence (3 billion)! 

Van Eenennaam BWG 2/12/2014 
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We can use these SNP CHIPS 
for “genomic” selection?  

1,000s animals 

– Phenotypes  

– Genotypes  

Training = estimate the 
value of every chromosome 

fragment contributing 
variation in a population with 

phenotypic observations  

Prediction = the results of training can then be 
used to develop prediction equations to predict  
the merit of new animals (e.g. young bulls) 

TRAINING POPULATION  

Van Eenennaam BWG 2/12/2014 
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Practical questions for 
breeders 

 How many phenotypic records are required in the 
initial experiment (reference population) used to 
estimate the effect of chromosome segments?  

Van Eenennaam BWG 2/12/2014 
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T: total number of records in the training population  

h2: heritability of the trait 

L : length of chromosomes (in Morgans) 

M: ~ 2Ne (effective population size) 

 
 

 

 

 

Th2 

ML 

Accuracy of the prediction 
equation proportional to: 

 

Van Eenennaam BWG 2/12/2014 

Goddard, M. E. 2009. Genomic selection: prediction of accuracy and 
maximisation of long term response. Genetica 136:245-257.  
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Effective population size 
estimates for cattle 

Breed  Ne Breed  Ne 

Angus 136 Brown Swiss 61 

Charolais 110 Guernsey 76 

Hereford 97 Holstein 99 

Limousin 174  Jersey 73 

Red Angus 85 Norwegian Red 106 

Brahman 115 Gir 133 

Nelore 86 

Beef Master 106 Merino (sheep) ~ Big (> 100) 

Santa Gertrudis 107 Ben Hayes 
(pers. comm.) 

Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. 2009  
The Bovine HapMap Consortium. Science 3245: 528-532. Supporting Online Material. Table S1. 
http://www.sciencemag.org/content/suppl/2009/04/22/324.5926.528.DC1  

Van Eenennaam BWG 2/12/2014 

http://www.sciencemag.org/content/suppl/2009/04/22/324.5926.528.DC1
http://www.sciencemag.org/content/suppl/2009/04/22/324.5926.528.DC1
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Effect of number of animals on accuracy of 
prediction equation (for a Ne of 100) 

 

Goddard, M. E., and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals and 
their use in breeding programmes. Nature Reviews Genetics 10: 381-391. 

Van Eenennaam BWG 2/12/2014 
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Effect of population size and heritability on the 
number of animals required in the training 

population (for an accuracy of 0.7) 

 

Goddard, M. E., and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals 
and their use in breeding programmes. Nature Reviews Genetics 10: 381-391. 

Van Eenennaam BWG 2/12/2014 
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There is also an effect of trait architecture 
 

The accuracy of predicting genetic values is higher for traits with a 
proportion of large effects (e.g. proportion black and fat percentage)   
than for a trait with no loci of large effect (e.g. overall type), provided   
the method of analysis takes advantage of the distribution of loci effects. 
 

Hayes, B. J., J. Pryce, A. J. Chamberlain, P. J. Bowman, and M. E. Goddard. 2010. Genetic Architecture 
of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in 
Holstein Cattle as Contrasting Model Traits. Plos Genet 6 

Van Eenennaam BWG 2/12/2014 
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Genome-wide SNP effects when all SNPs are fitted simultaneously for 
three traits in Holstein Friesian cattle. Proportion of black (A), fat% (B), 
and overall type (C). Note the different scale of the y axis for overall type 
compared with proportion of black and fat%. 
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If a nearly 
infinitesimal model 
is correct as seems 
to be the case for 
most quantitative 
traits; then large 
sample sizes will be 
needed to achieve 
high accuracy 

Maybe R.A. Fisher was onto 
something? 

Van Eenennaam BWG 2/12/2014 
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Number of effects >>> 
number of records 

 When we come to estimate the allelic 
effects of all of these markers, we are 
faced with estimating many effects in a 
data set of limited size, and there are not 
enough degrees of freedom to fit all 
marker effects simultaneously 

 Need methods that can deal with that 

 

Van Eenennaam BWG 2/12/2014 
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Statistical methods for 
genomic selection 

 A number of approaches have been proposed for 
estimating the single marker or haplotype effects 
across chromosome segment effects for genomic 
selection. The key differences between these 
approaches is the assumption they make about 
the variances of haplotype or single marker 
effects across chromosome segments, and 
whether some proportion of markers have a zero 
effect (Bayesian approaches). 

Van Eenennaam BWG 2/12/2014 
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Practical questions for 
breeders 

 How many phenotypic records are required in the initial 
experiment (reference population) used to estimate the 
effect of chromosome segments?  

 How often do we need to re-estimate the 
chromosome segment effects? 

Van Eenennaam BWG 2/12/2014 
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How often is it necessary to re-
estimate the marker effects? 

Van Eenennaam BWG 2/12/2014 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of Total Genetic 
Value Using Genome-Wide Dense Marker Maps. Genetics, Vol. 157, 1819-1829 

 



Markers can predict family relationships between 
animals, independently of Linkage Disequilibrium 
(LD)  between the markers and QTL (i.e. due to 
family relationships or linkage) 

Additive-

genetic 

relationships 

between 

training and 

validation 

animals was 

found to be 

a good 

indicator of 

accuracy 

Habier, D., J. Tetens, F.-R. Seefried, P. Lichtner, and G. Thaller. 2010. The impact of genetic relationship information 

on genomic breeding values in German Holstein cattle. Genetics Selection Evolution 42: Article No.: 5 

Offspring 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838754/figure/F4/


Linkage (i.e. associations exist 
within families) versus LD 

Exploring these two sources of GS accuracy, Habier et al. 
showed that ridge regression (BLUP) is more effective at 
capturing genetic relationships because it fits more markers 
into the prediction model.  

 

In contrast, BayesB is more effective at capturing LD 
between markers and QTL. Because these marker–QTL 
linkages are tight, recombination does not cause them to 
decay rapidly, and accuracies from BayesB persist longer 
than those from ridge regression (BLUP).  

Van Eenennaam 11/15/2012 

Jannink J et al. Briefings in Functional Genomics 2010;9:166-177 

 



Decomposition of GS prediction accuracy using 

the method of Habier et al.* 
Jannink J et al. Briefings in Functional Genomics 2010;9:166-177 

 

* Habier D,  Fernando RL,  Dekkers JCM. The impact of genetic relationship information on genome-assisted 

breeding values. Genetics 2007;177:2389-97. 

On a genome comprised of 

seven chromosomes of 1.5 M 

each, individuals were 

generated using a coalescent 

assuming an effective 

population size of 100.  
• Round and square symbols, ridge 

regression and Bayes-B, 

respectively.  

• Symbols with gray (inside or 

around) and without, 40 QTL and 

200 QTL, respectively.  

• Black and non-black symbols, 

4000 and 400 markers, 

respectively.  

• Small and large symbols, training 

population size of 400 and 2000, 

respectively 

Bayes-B 

40 QTL 

4000 markers 

Training on 

2000 

Bayes-B 

200 QTL 

400 markers 

Training on 400 



In general accuracy is higher 
when: 

 A large number of animals and high-quality 
phenotypic records available for training  

 Trait is highly heritable 

 Small effective population size so small number 
of chromosome segments to track 

 There are genetic relationships (linkage) 
between training and selection candidates 

 Small number of QTL affecting the trait so there 
is a marker associated with every QTL 

 Retrain the prediction equation every generation 
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Dairy industry has successfully 
implemented genomic selection 

Training 1:  
Old Progeny Tested Bulls  

Validation: 
New Progeny  
Tested Bulls  

Application: 
New Sire 
Candidates 

r0 

r1 

Training 2:  
Old & New Progeny Tested Bulls  

Slide courtesy of Marc Thallman, US MARC Van Eenennaam BWG 2/12/2014 

Validation: Purpose is 
to estimate the 
correlation between 
the prediction and the 
true genetic merit 
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Dairy industry  
suited to WGS 

• High use of AI 

• Clear selection goal  

• One breed used extensively 

• Large number of high accuracy A.I. sires for training 

• Extensive, uniform collection of  data on traits 

• Central evaluation (AIPL) receiving genotypes 

• Obvious way to increase rate of genetic gain 

• AI companies funding the genotyping because they 

get a clear cost savings in terms  of young sire 

program 

 

 

 

Van Eenennaam BWG 2/12/2014 
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Young sire 
Parent Average 

x 

AS AD 

Mendelian Sampling  ? 

Accuracy 0.20 

Breeding value prediction in 
Dairy Sires 

5 years;  $50,000 cost 

x 

AS AD 

Mendelian Sampling 

Young sire 
Progeny Test 

Accuracy 0.80 

x 

AS AD 

Mendelian Sampling 

Accuracy 0.70 

Young sire 
Genomic 
Selection 

Birth Birth;  << $50,000 cost 

Van Eenennaam BWG 2/12/2014 Figure by Gonzalo Rincon 
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Genomic selection can 
double rate of genetic gain 

Rate of genetic gain ΔG 
 

ΔG = (im rm +if rf)/ (Lm + Lf) genetic standard deviation/year  

 

  = (2*0.8 + 0)/ (6+2)   =  0.2 s.d./year (progeny test) 

 

  = (2*0.6 + 0.8*0.6)/ (2+2)  =  0.42 (genomic selection) 
   

 i = intensity of selection  

 r = accuracy of selection 

 L = generation interval 

  
Modified from Goddard. (2009) BIF Meeting 



Wiggans, 2013 

> 400,000 Genotypes run in US dairy cattle 
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Evaluation date 

Young imputed

Old imputed

Female Young <50K

Male Young <50K

Female Old <50K

Male Old <50K

Female Young >=50K

Male Young >=50K

Female Old >=50K

Male Old >=50K

Imputed, young 

Imputed, old (young cows included before March 2012)  

<50K, young, female 

<50K, young, male 

<50K, old, female 

<50K, old, male ( 20 bulls) 

50K, young, female 

50K, young, male 

50K, old, female 

50K, old, male 

2013 2012 2011 2009 2010 
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 The Beef  
Cattle Industry 

 Little use of AI 

 Relatively few high accuracy sires for training 

 Multiple competing selection goals – cow/calf, feedlot, 
processor – little data/value sharing between sectors  

 Few/no records on many economically-relevant traits 

 Many breeds, some small with limited resources 

 Crossbreeding is important 

 No one wants to pay as value is not recovered by breeder 

 

Van Eenennaam BWG 2/12/2014 

A perfect storm is a confluence of events that 

drastically aggravates a situation  



Practical questions for 
breeders 

 How many phenotypic records are required in the initial 
experiment (reference population) used to estimate the 
effect of chromosome segments?  

 How often do we need to re-estimate the chromosome 
segment effects? 

 Does it work across breeds/strain/cultivars? 

Van Eenennaam BWG 2/12/2014 

NO  
at least not with 50K in cattle 



Angus predictions (r) are not very 
accurate in Red Angus (Data provided by Dorian Garrick) 

Trait Trained in Black 
Angus/Validated 
in Black Angus 

Trained in Black 
Angus/Validated 

in Red Angus 

BirthWt 0.64 0.27 

WeanWt 0.67 0.28 

YearlingWt 0.75 0.23 

Fat 0.70 0.21 

Rib Eye Area 0.75 0.29 

Marbling 0.80 0.21 

CalvEase (D) 0.69 0.14 

CalvEase (M) 0.73 0.18 

Angus = ASREML 5-fold validation Red Angus = correlation 

Training on de-regressed EPDs Saatchi et al (GSE) 
Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  
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AN: Angus  GV: Gelbvieh 

BM: Beefmaster  LM: Limousin 

BN: Brangus  MA: Maine Anjou 

BR: Brahman  RA: Red Angus 

BU: Braunvieh  SA: Salers 

CA: Chiangus  SG: Santa Gertrudis 

CH: Charolais  SH: Shorthorn 

HH: Hereford  SM: Simmental 

HL: Line 1 HH 

Approximate genetic 

distance between 

breeds using data from 

the 2,000 Bull Project. 
Larry Keuhn, USDA MARC 

http://www.nbcec.org/topics/

BeefBreeds.pdf  

Van Eenennaam BWG 2/12/2014 

http://www.nbcec.org/topics/BeefBreeds.pdf
http://www.nbcec.org/topics/BeefBreeds.pdf
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Realized accuracies (r) resulting from 
genomic selection prediction equations 
trained in US beef cattle breeds 

Van Eenennaam et al. 2104. Annual Review Animal Biosciences 2:105-139. 



Lead Today with 50K 

1.  Birth weight 

2.  Weaning weight  

3.  Weaning maternal (milk) 

4.  Calving ease direct 

5.  Calving ease maternal 

6.  Marbling 

7.  Backfat thickness    

8.  Ribeye area  

9.  Carcass weight  

10.  Tenderness 

11.  Postweaning average daily gain 

12.  Daily feed intake  

13.  Feed efficiency (net feed intake) 

50K SNP chip assays 

50,000 SNPs spread 

throughout genome ($75) 
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Information sources for EPDs – DNA 

just one source of data for GE-EBV 

Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  

  r 
 

Accuracy (r) – correlation 

between test result and 

actual genetic merit 
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American Angus Association performs 

weekly evaluations with genomic data – 

recently updated to include heifer pregnancy 

Van Eenennaam BWG 2/12/2014 

 Association’s genetic evaluations, the DNA test results are 
incorporated into the EPDs using a correlated trait approach. 

  

 The correlations (r) between the HD 50K prediction and the 
phenotypic data at the Association are updated with each 
recalibration effort and effectively range from .60 to .70, except for 
milk (.38) and heifer pregnancy (.49).  

 

 The December 6, 2013, EPD update includes HD 50K predictions from 
over 51,000 registered Angus animals with genotypes retained at the 
Association. Results are incorporated into at least 15 EPDs which are 
then components of the Angus $Value selection index suite. 

http://www.angus.org/AGI/GenomicCalibrationRelease.pdf December 2013 

http://www.angus.org/AGI/GenomicCalibrationRelease.pdf
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Marker location relative to the gene of interest in 
two breeds when using the 50K SNP chip assay does 
not work across breeds 

Van Eenennaam BWG 2/12/2014 

de Roos, A.P.W., B.J. Hayes, and M. E. Goddard. 2009. Reliability of Genomic 
Predictions Across Multiple Populations. Genetics. 183(4): 1545–1553 

“Our results suggest that the most accurate genomic predictions are 
achieved when phenotypes from all populations are combined in one 
training set, while for more diverged populations a higher marker density (in 
the case of cattle >300,000 SNP) is required.” 
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Marker location relative to the gene of interest in two 
breeds when using the (A) 50K SNP chip assay (markers 
spaced at ~ 70 kb intervals), or (B) the high density 700 
K SNP chip assay (markers spaced at ~ 5 kb intervals) 

Van Eenennaam BWG 2/12/2014 





Practical questions for 
breeders 

 How many phenotypic records are required in the initial 
experiment (reference population) used to estimate the 
effect of chromosome segments?  

 How often do we need to re-estimate the chromosome 
segment effects? 

 Does it work across breeds/strain/cultivars? 

 How many markers do you need – 1, 384, 10K, 
50K, 770K, whole genome?  

 What about less expensive reduced panels e.g. 
100 SNP panels– can they work?  

Van Eenennaam BWG 2/12/2014 
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1. Dry Matter Intake 
2. Birth Weight 
3. Mature Height 
4. Mature Weight 
5. Milk 
6. Scrotal Circumference 
7. Weaning Weight 
8. Yearling Weight 
9. Marbling 
10.Ribeye Area 
11.Fat Thickness 
12.Carcass Weight 
13.Tenderness 
14.Percent Choice (quality grade) 
15.Heifer Pregnancy 
16.Maternal Calving Ease 
17.Direct Calving Ease 
18.Docility 
19.Average Daily Gain 
20.Feed Efficiency 
21.Yearling Height 
22.  Scrotal Circumfrence 

384 SNP  
    ~$40 



Reduced SNP panels: Accuracy of direct genomic 
value (DGV) of dairy bulls using subsets of 5,000 

or less of best SNP for each trait 

Moser, G., M. S. Khatkar, B. J. Hayes, and H. W. Raadsma. 2010. 

Accuracy of direct genomic values in Holstein bulls and cows 

using subsets of SNP markers. Genetics Selection Evolution 42. 

Predictions based on          

<1,000 SNP panels were 

very sensitive to the 

selection method and 

tended to be low accuracy 

Traits : 

Protein % 

ASI (Australian Selection Index) 

APR (Australian Profit Rank)  

 

Number of SNP 

A
c
c
u
ra

c
y
 



Reduced SNP panels: Percentage of the highest 

ranked SNP that are shared between sets of traits*  
for subsets including 500, 1,000, 5,000 or 10,000 SNP 

 

Moser, G., M. S. Khatkar, B. J. Hayes, and H. W. Raadsma. 2010. Accuracy of direct genomic values in 

Holstein bulls and cows using subsets of SNP markers. Genetics Selection Evolution 42. 

* Dairy traits included: 

1. Protein 

2. Protein % 

3. Survival  

4. Fat % 

5. Milk 

6. Overall Type 

7. APR (Australian Profit Rank)  

8. ASI (Australian Selection Index) 

9. Fat 

 

Few SNPs were in 

common between 

the trait-specific 

subsets 



Summary of what the literature is 
telling us about genomic selection 

 Prediction equations derived in one breed do not predict 
accurate GEBVs when applied to other breeds 

 Combining breeds into one large multi-breed reference 
population may give reasonable accuracies in purebreds 

 To find markers that are in LD with QTL across diverged 
breeds, such as Holstein, Jersey, and Angus, will require high 
density SNPs (>300,000 informative markers in cattle) 

 If markers are picking up family relationships (linkage), then 
the accuracy of marker-based selection will decay over 
generations within a breed/line/cultivar 

 Few of the “best” markers for one trait are common to 
another so “reduced panels” will need to be designed for 
imputation not single trait selection 

Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  
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Hype cycle: the over-enthusiasm or "hype" and 
subsequent disappointment that typically happens 
with the introduction of new technologies 

Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  



It may be necessary to go to whole 
genome resequencing – select with 
the causative SNPs (rather than LD)? 

Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  

 Cost is likely to get to as low as $1000/animal 

 Whole genome data >40% more accurate than 
dense SNP chips 

 Need to use Bayesian approaches to estimate SNP 
effects 

 Predictions remained accurate in populations 10 
generations removed from the reference population  

Meuwissen, T. and M. Goddard. 2010. Accurate 
prediction of genetic values for complex traits by 
whole-genome resequencing. Genetics 183:623-631. 



Practical questions for breeders – 
some still unanswered! 

 How many phenotypic records are required in the initial 
experiment (reference population) used to estimate the 
effect of chromosome segments?  

 How often do we need to re-estimate the chromosome 
segment effects? 

 Does it work across breeds/strain/cultivars? 

 How many markers do you need – reduced panel (eg. 
3K), 50K, 770K, whole genome?  

 How much can you afford to pay? (and who pays) 

 Does this technology change optimal breeding 
program design? Absolutely need a multi-trait 
$selection index based on breeding objective. 

Van Eenennaam BWG 2/12/2014 



Questions?  
Van Eenennaam BWG 2/12/2014 Animal Genomics and Biotechnology Education  


