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High-density SNP chip assays (e.g. Illumina BovineSNP50,000 (SNP50), BovineHD ~770,000 SNP 

(HD)) are currently price prohibitive for many applications and species. There is considerable interest in 

developing low-density, low cost SNP assays for a variety of purposes including selection of breeding 

stock in species where individuals have a comparatively low value relative to the cost of high-density 

arrays, selection of replacement animals on commercial farms, parentage assignment, optimizing mate 

choice, and marker-assisted management. Two basic approaches can be used to develop low-density 

arrays. The first involves selecting SNPs that are the most highly associated with the trait of interest in 

the training data set. In the case of traits that are affected by very many genes with a small effect, as 

seems to be the case with most complex traits (Hayes et al. 2010), not all genes will be associated with a 

reduced set of markers. The other approach is to use a subset of SNP to “impute” high-density 

genotypes. Imputation is a method of dealing with missing genotypes by filling in values. 
 

USE OF REDUCED SNP PANELS IN LIVESTOCK INDUSTRIES 
 

There are a few published reports of high accuracy reduced SNP panels being used in company 

breeding lines of chicken and pigs (Table 1). In the swine industry a small number (96 or 196) of the 

most significant SNPs for each different trait were made into trait-specific SNP panels and in the poultry 

industry a 384 reduced SNP panel was used for high-density (41K) panel imputation of multiple traits,  
 

Table 1. Company-reported accuracy estimates of commercial panels for livestock selection 
 

Industry          Trait # SNPs Accuracy 

(rg) 

estimate 

Country Breed Company 

Swine Scrotal Hernia 96 0.30 US Cross-bred Genus/PIC
1
 

Swine Finisher mortality 96 0.30 US Cross-bred Genus/PIC 

Swine Total born 196 0.77 US Cross-bred Genus/PIC 

Chicken Body Weight 384 (being 0.58 US Broiler Aviagen Ltd.
2
 

Chicken Hen house production used for 41K 

imputation) 

0.60 US Broiler Aviagen Ltd. 

 

In the dairy industry a study compared the best makers selected from the 50K chip for 9 dairy traits, 

(Moser et al. 2010). Few were found to be in common between the different traits, and at least 1,000 of 

the highest ranked SNPs were required to get accurate predictions for each trait. The authors of this 

paper concluded that combining the highest ranked SNP for each trait onto a single chip was not a 

feasible approach to reducing genotyping costs. Weigel et al. (2009) compared dairy lifetime net merit 

correlations between molecular breeding values (MBV) based on SNP panels of varying size and 

progeny test data (Table 2).   

                                                           
1
 Deeb, N. et al. (2011) http://www.intl-pag.org/19/abstracts/P05n_PAGXIX_606.html   

2
 Wang et al. (2011) http://www.intl-pag.org/19/abstracts/P05m_PAGXIX_580.html    
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Table 2. Correlations of April 2008 predicted transmitting abilities for lifetime net merit with 

August 2003 MBV for all SNP and selected or equally spaced reduced SNP sets in a testing set of 

1,398 Holstein bulls (rPT_All), 1,195 bulls with genotyped sires (rPT_Sire), and 203 bulls without 

genotyped sires (rPT_NoSire) (Weigel et al., 2009). 
 

No. SNP Method of SNP Selection rPT_All rPT_Sire rPT_NoSire 

300 Largest Effects 0.428 0.447 0.312 

300 Equally Spaced 0.253 0.262 0.202 

500 Largest Effects 0.485 0.503 0.369 

500 Equally Spaced 0.333 0.348 0.245 

750 Largest Effects 0.519 0.530 0.441 

750 Equally Spaced 0.435 0.450 0.348 

1,000 Largest Effects 0.537 0.549 0.460 

1,000 Equally Spaced 0.422 0.438 0.321 

1,250 Largest Effects 0.554 0.567 0.461 

1,250 Equally Spaced 0.477 0.489 0.395 

1,500 Largest Effects 0.559 0.576 0.445 

1,500 Equally Spaced 0.518 0.534 0.412 

2,000 Largest Effects 0.567 0.582 0.469 

2,000 Equally Spaced 0.539 0.559 0.408 

32,518 All Available 0.612 0.627 0.511 
 

The high density chip (32,518 SNP) provided a correlation of 0.612 for all bulls, with a significant 

advantage for bulls with genotyped sires. By comparison, correlations between progeny test data and 

MBVs from 300 to 2,000 selected SNP panels ranged from 0.428 to 0.567, and correlations between 

progeny test data and MBVs from 300 to 2,000 equally spaced SNP ranged from 0.253 to 0.539. In 

every case, the predictive ability of MBV from selected SNP was greater than for equally spaced SNP. 

 

However because low-density assays composed of selected SNP will be breed and trait-specific, the 

authors concluded it would be more efficient to use equally spaced SNP that would facilitate imputation 

of high-density genotypes, rather than to focus on prediction of MBVs from smaller panels that contain 

only a few hundred selected SNP with large estimated effects for a single trait. The preferred option is to 

use evenly spaced SNP to infer or impute the sequence of missing SNPs based on the high density 

genotype of key ancestors. The dairy industry is currently using the Illumina BovineLD (LD) 

Genotyping chip which is comprised of 6,909 SNP for imputation. As of February 2012, the USDA 

national genotype database for dairy cattle included LD genotypes for 19,515 animals.  

 

A hybrid of these two approaches involves selecting a subset of highly ranked SNP that are 

themselves within evenly-spaced segments of approximately equal size for imputation (Habier et al. 

2009; Moser et al. 2010). The GeneSeek Genomic Profiler 80K (GGP-80K) is an example of such a 

product. It was developed with around 80,000 SNPs. Although 80K may not seem to be a low-density 

SNP assay, it is relative to the 770,000 HD! The GGP-80K includes SNP50 and HD SNP with the 

largest effects on net merit index. Consideration also was given to spacing as well as maintaining around 

30,000 SNP50 SNP for imputation to HD. The GGP-80K genotypes are expected to improve the 

accuracy of imputation and genomic evaluation in the dairy industry because of these additional SNP 

(Wiggans et al., 2012). 
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USE OF REDUCED SNP PANELS IN THE BEEF INDUSTRY 
 

 Until relatively recently, commercialized DNA tests for marker-assisted selection in beef cattle 

targeted only a handful of traits, specifically marbling, tenderness and feed efficiency (Van Eenennaam 

et al. 2007).  Recent tests on the U.S. market target more than 10 traits including growth, maternal, and 

carcass traits. One of these tests is a product based on the Illumina SNP50 (Pfizer 50K, Pfizer Animal 

Health, Kalamazoo, MI) and the other is a 384 SNP panel (Igenity 384, Duluth, GA). Both products 

have been trained for Angus cattle.  The accuracies (genetic correlation (rg)) between MBV and 

phenotypic trait of interest in American Angus Association data are in the range of 0.24-0.65 (Table 3).  
 

Table 3. Genetic correlation between genomic results (MBV) and phenotypic trait of interest 

(American Angus Association data) by genomics company
3
. 

 

 

Trait 
Genetic Correlation (r)/(r

2
%) 

Igenity 384 Pfizer 50K 

Calving Ease Direct .47 (22%) .33 (11%) 

Birth Weight .57 (32%) .51 (26%) 

Weaning Weight .45 (20%) .52 (27%) 

Yearling Weight .34 (12%) .64 (41%) 

Dry Matter Intake (component of RADG) .45 (20%) .65 (42%) 

Yearling Height .38 (14%) .63 (40%) 

Yearling Scrotal .35 (12%) .65 (42%) 

Docility .29 (.08%) .60 (36%) 

Milk .24 (06%) .32 (10%) 

Mature Weight .53 (28%) .58 (34%) 

Mature Height .56 (31%) .56 (31%) 

Carcass Weight .54 (29%) .48 (23%) 

Carcass Marbling .65 (42%) .57 (32%) 

Carcass Rib .58 (34%) .60 (36%) 

Carcass Fat .50 (25%) .56 (31%) 
 

 

 

Such high accuracies for multiple traits when using a single 384 SNP panel contrasts from findings 

with reduced panels in other animal industries. Likewise the accuracy estimates associated with the 50K 

Pfizer product are higher than would have been predicted by deterministic modeling based on the 

number of phenotypic records used in the training populations. These high accuracies might be 

explained if there are relationships between animals in the population that was used for training (i.e. 

high accuracy Angus AI bulls), and the evaluation population (i.e. registered Angus cattle). This is 

undoubtedly the case, and would likely be the case for most breeds where the training population 

involves widely-used (i.e. high-accuracy) sires. Markers can predict family relationships between 

animals, independently of linkage disequilibrium between the markers and genes (Habier et al. 2007). If 

animals in the training and target populations share DNA segments from a small number of ancestors 

and are only a few generations apart, a relatively small number of markers will be able to track segments 

shared between related animals (Moser et al. 2010).  

                                                           
3
 Northcutt. S.L. (2011) http://www.angus.org/AGI/GenomicChoice11102011.pdf (updated 11/18/2011) 
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The practical implication of markers picking up family relationships is that the accuracy of marker-

based selection will decay over generations within breed. This was demonstrated in German Holstein 

cattle where the additive-genetic relationships between training and validation animals were found to be 

a good indicator of accuracy (Habier et al. 2010). Effectively this means that the accuracy of prediction 

equations will decrease as the relationship between the training population and the evaluation population 

becomes more distant. From the perspective of seedstock breeders, this might not be an issue as elite 

seedstock typically provide the next generation of selection candidates and so selection candidates will 

most likely be closely related to the training population. However, such tests are likely to be less 

accurate across lines of Angus cattle that have few close relatives in the training data set. Practically this 

means that SNP effects will have to be re-estimated frequently to include data from each generation of 

selection candidates, although this may create logistical complications for genetic evaluation entities, 

especially if they do not have access to both the phenotypes and the genotypes or if additional costly 

phenotyping is required. 
 

THE FUTURE 
 

At the current time the costs of genomic testing tend to exceed the value that is returned to any single 

sector of the beef industry. Seedstock producers are sometimes sending DNA to different labs for 

pedigree verification, genetic defect testing, and genomic enhanced EPDs, and combined genotyping 

costs have sometimes been in excess of $200 per animal. This is cost-prohibitive, and the inefficient 

practice of extracting DNA multiple times from the same animal will soon become a relic of the past.  

As genotyping costs continue to decline, it is likely that assays involving thousands of SNP will 

become inexpensive and perhaps “the norm”, and there will be no need to select a few hundred of the 

“best” SNP to develop a low-cost, reduced-SNP panel. Genomic technology providers are already 

starting to develop cheaper multipurpose SNP panels with thousands of SNP markers. For example, 

GeneSeek has developed a product called the Genomic Profiler (GGP) using the “add-on” capability to 

add custom SNP to the existing Illumina LD chip. This 8,655 SNP product includes the 6,909 LD 

evenly-spaced SNP for imputation and additional SNP for proprietary single-gene tests for recessive 

conditions including genetic defects, detection of haplotypes that affect fertility in dairy cattle, 

imputation of microsatellite alleles to facilitate parentage validation, and improved imputation by 

including SNP from the now-obsolete Illumina GoldenGate Bovine3K Genotyping BeadChip. As SNP 

for an increasing number of uses are included on a single chip, the benefit derived from these multiple 

applications will increase the value derived from genotyping. It may be that low-cost SNP panels and 

the combined value derived from using DNA information for multiple purposes across the beef-cattle 

supply chain will push the economics of genomics over the tipping point towards more widespread 

industry adoption (Van Eenennaam and Drake, 2012) 
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