SNPs, CHIPs and WGS – Making Sense of Biotech Babble

Alison Van Eenennaam, Ph.D.
Cooperative Extension Specialist
Animal Biotechnology and Genomics
University of California, Davis
alvaneenennaam@ucdavis.edu

http://animalscience.ucdavis.edu/animalbiotech/

NBCEC Brownbagger 10/8/08
Overview

- Background
- STRs
- SNPs
- CHIPs
- MAS
- WGS
- Implications
The bovine genome is similar in size to the genomes of humans, with an estimated size of 3 billion base pairs. Human & cattle genomes are 83% identical.
Why is DNA sequence important to the cattle industry?

- **Parentage**
- **DNA-Assisted Selection**
 genetically identification of superior animals through DNA genotyping
- **Traceability** – only DNA can link backwards and forwards through the production chain
Why is parentage important?

- Identify bulls producing problem calves
- Identify extremes in phenotypes
- ID of cleanup bulls after AI
- Determine bull dominance – 50% of the bulls sire 80% of the calves
- Enable EPD calculations for commercial sires in a herd
- Genetic product/process validation
There are two basic methods being used to determine the genetic identity and kinship (paternity) of an animal:

- **Microsatellites** or short tandem repeat markers (STRs)
- **SNPs** = single nucleotide polymorphisms
How do microsatellites work?

• Microsatellites or STRs are small tandem repeats (2, 3 or 4 bp) that vary in number and size between individuals

• Inherit a copy from the dam and a copy from the sire

• Used for exclusion of parentage
Probability of exclusion (P_E)

- P_E = the probability that a random individual other than a true parent from a population in Hardy-Weinberg equilibrium is excluded as the parent of another randomly chosen individual.

- For unrelated sires, the probability of unambiguous parentage assignment is equal to P_E raised to the power of the number of non-parent candidate bulls.
Microsatellites Pros and Cons

PROS
- Highly informative markers – many alleles
- Have been used by breed associations for years so historical database exists
- ISAG has a standardized marker set

CONS
- Hard to get consistent results across labs
- Not all microsatellites are equally informative across all breeds of cattle
- Can not be made to get much cheaper – currently running > $20/test
- Not much more research being done on finding new microsatellites
SNPs = Single nucleotide polymorphisms

SNPs are the most common and stable type of DNA marker in cattle and are ideally suited for automated, economical genetic testing.

Ideal SNP for parentage
- Allele in equal proportions ($p = 0.5$, $q = 0.5$)
- Evenly spaced throughout the genome
- Can be accurately scored
- Are commonly used across all labs
SNPs Pros and Cons

PROS

- Abundance – 30 million in cattle!
- Potential for automation
- Low genotyping error rates
- Ease of standardization between labs
- Low mutation rates

CONS

<table>
<thead>
<tr>
<th>Calf</th>
<th>AA</th>
<th>AA</th>
<th>AA</th>
<th>AA</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull 1</td>
<td>AA</td>
<td>AA</td>
<td>TT</td>
<td>AA</td>
<td>0</td>
</tr>
<tr>
<td>Bull 2</td>
<td>TA</td>
<td>TA</td>
<td>TA</td>
<td>TA</td>
<td>6</td>
</tr>
<tr>
<td>Bull 3</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td>94</td>
</tr>
</tbody>
</table>
Blood collected on FTA cards from 27 herd sires and 624 calves derived from a multiple-sire pasture

Daniel J. Drake
M. Cecilia T. Penedo
University of California, Davis
Genotyping

- Genotyping and paternity assignments based on microsatellites (STRs) were done by the UC Davis Veterinary Genetics Laboratory using a panel of 23 cattle markers ($P_E = 99.9\%$).

- Genotyping based on SNPs were done by a commercial genotyping company using a panel of 28 loci ($P_E = 95.5\%$).

Results of the paternity analysis
Animal Biotechnology and Genomics Education

<table>
<thead>
<tr>
<th>One possible sire</th>
<th>23 Microsatellite (STR) panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>533*</td>
<td>85.4%</td>
</tr>
<tr>
<td>More than one sire</td>
<td>4</td>
</tr>
<tr>
<td>All excluded</td>
<td>76</td>
</tr>
<tr>
<td>Resubmits</td>
<td>11</td>
</tr>
<tr>
<td>TOTAL</td>
<td>624</td>
</tr>
</tbody>
</table>

* 10 assignments allowed a one locus mismatch

(PE=99.9%) DNA from more than one animal
<table>
<thead>
<tr>
<th></th>
<th>23 Microsatellite (STR) panel</th>
<th>28 SNP panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>One possible sire</td>
<td>533*</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>85.4%</td>
<td>23.3%</td>
</tr>
<tr>
<td>More than one sire</td>
<td>4</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>0.6%</td>
<td>67.3%</td>
</tr>
<tr>
<td>All excluded</td>
<td>76</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>12.2%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Resubmits</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.8%</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>624</td>
<td>624</td>
</tr>
</tbody>
</table>

* 10 assignments allowed a one locus mismatch

(PE=99.9%) (PE=95.5%)
Unambiguous Assignment of Calves to a Single Sire Using a 28 SNP Panel versus a 23 STR Panel

% Offspring assigned

28 SNP PANEL (Prob. exclusion = 0.955)
23 STR PANEL (Prob. Exclusion = 0.999)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One sire assigned</td>
<td>175</td>
<td>260</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>23.3%</td>
<td>86.7%</td>
<td>97.0%</td>
</tr>
<tr>
<td>More than one sire</td>
<td>420</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>67.3%</td>
<td>5.3%</td>
<td>0.33%</td>
</tr>
<tr>
<td>All excluded</td>
<td>29</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.6%</td>
<td>8.0%</td>
<td>2.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>624</td>
<td>300</td>
<td>303</td>
</tr>
</tbody>
</table>
High-throughput SNP genotyping on 50,000 SNP CHIP (50K Chip)

The sequencing of the bovine genome allowed for a collaboration between MARC, BARC, UMC and UA to develop a set of 50,000 SNPs that are located throughout the entire genome.
12 samples per BeadChip can be run on 50,000 SNPs at ~ $200/sample!
SNPs and parentage using the 50K chip

"The low rate of genotyping errors meant that less than five inconsistencies were usually found when parent-progeny assignment was correct. However, several thousand inconsistencies were usually found when the parent-progeny assignment was incorrect."

Implications

- Currently there are three competing SNP genotyping technologies – Affymetrix, Sequenom, and Illumina – prices are now less than 1 cent per SNP
- It is likely that SNP markers will replace alternatives (i.e. microsatellites) over the next 5 years
Commercial companies are offering DNA markers for use in **Marker-Assisted Selection (MAS)** for given traits.

Marker-assisted selection is the process of using the results of DNA testing to assist in the selection of individuals to become parents in the next generation.
Tests for quantitative traits – currently 10-100 SNPs

- Meat Tenderness
- Quality Grade (Marbling)
- Beef Cattle Feed Efficiency
- Meat Yield
- Disease Resistance
- Dairy Form
- Milk and Milk Component Yield
The purpose of the NBCEC commercial DNA test validation is to independently verify associations between genetic tests and traits as claimed by the commercial genotyping company using phenotypes and DNA from reference cattle populations.

The validation process is a partnership of the owners of DNA and phenotypes (e.g., breed associations) and genomics companies, facilitated by the NBCEC.
MAS (Marker-assisted selection)

- Currently available markers collectively account for 10% or less of the genetic variation
- A handful of markers is not enough for quantitative traits
- Hard to find all genes that affect a single trait
- Markers do not exist for many important traits
- Early adopters of genotyping for MAS in livestock have not experienced sufficient value capture i.e. they are too expensive
And DNA data is not being used in national cattle evaluation

- Only a small proportion of the population is being genotyped.
- Individual producers may be reluctant to share results for animals that are shown to have inherited unfavorable marker alleles.
- There is no national structure, at the breed association or any other level, to routinely capture genotypic information in a consistent form for the purpose of national evaluation.
Whole genome-assisted selection (WGS)

- The use of dense SNP markers across the entire genome enables an estimation of the genetic merit of every chromosome fragment contributing variation in a population with phenotypic observations.
- Can simultaneously test 50,000 markers.
- Can be used to predict merit for all traits for which phenotyped populations exist.
What is needed for whole genome-assisted selection?

THEORY

- Population
- Phenotypes
- Genotypes

Training = estimate the value of every chromosome fragment contributing variation in a population with phenotypic observations.

Prediction = the results of training can then be used to predict the merit of new animals, not contained in the training data set.
WGS effectively estimates an EPD for every chromosome fragment in the genome.
Possible applications

- Product quality
- Feed efficiency
- Health
- Robustness
- Adaptability
- Stayability
- Reproductive traits
- Genetic disease resistance
 - Other difficult to phenotype traits
WGS compared to MAS

Genomic selection uses the estimated effect of many loci at once, not just the small number of statistically significant loci that are a feature of MAS (Dorian Garrick, Iowa State University)

As there are so many variants detected in WGS, the properties of them as a group becomes more important than their individual effects...It matters little if a specific variant fails under some circumstances as long as the majority of the variants are predictive. (John McEwan, NZ)
California to host BIF 2009!
Mark your calendars!

http://www.calcattlemen.org/bif2009.html

2009 Beef Improvement Federation Annual Research Symposium and Annual Meeting
Sacramento, California
April 30 – May 3, 2009

Wednesday April 29th
Thursday April 30th
Friday May 1st
Saturday May 2nd
Sunday May 3rd

Early Registration
Registration and Evening Reception
Eastern Tour “Foothill Bovines, Equines and Fine Wines”
Convention, Family/Spouse Tour, Evening Dinner
Convention and Evening on your Own in Sacramento
Western Tour “Ocean Wines and Bovines”