Using DNA information in beef cattle production

Alison Van Eenennaam, Ph.D.
Animal Genomics and Biotechnology
Cooperative Extension Specialist
Department of Animal Science
University of California, Davis, CA
Ph: (530) 752-7942
alvaneenennaam@ucdavis.edu

animalscience.ucdavis.edu/animalbiotech
Outline

- How can DNA help accelerate genetic progress?
- Why genomics helps the dairy industry
- Why genomics is harder in the beef industry
- Current products on the market for beef
- Status of incorporation of DNA information into national beef cattle evaluations
- Development of tests for hard-to-measure traits and value to beef cattle sectors
- Implications of genomics to industry structure
Animal breeders have used the resemblance between relatives to select parents of the next generation and make genetic change.
Rate of change is accelerated when breeders can accurately identify those individuals that have the best genetics at a young age.

$$\Delta G = \text{intensity of selection} \times \text{accuracy of selection} \times \left(\sqrt{\frac{\text{genetic variance in population}}{\text{generation interval}}} \right)$$
The genome age

GENES CONTAIN INSTRUCTIONS FOR MAKING PROTEINS

PROTEINS ARE THE BUILDING BLOCKS OF LIFE AND COLLECTIVELY ACT TO DETERMINE PHENOTYPE
What is a Genetic Marker?

A DNA sequence variation that has been associated with a given trait in one or more populations.
We want to use DNA markers (SNPs) in addition to pedigree and performance information to help select the best animals.
The sequencing of the bovine genome allowed for the development of a 50,000 marker chip!

- Can simultaneously test 50,000 markers
With high density (50K) SNP chips it is possible to:

- Divide genome into 50,000 chromosome segments based on marker intervals
- Marker density must be sufficiently high to ensure that all of the genes affecting a traits are “linked” (close to) a marker
- Idea is to capture all genetic variance with evenly spread markers and assign an “EPD” value to each segment
What is needed for “genomic” selection?

THEORY

- Population
- Phenotypes
- Genotypes

Training = estimate the value of every chromosome fragment contributing variation in a population with phenotypic observations.

Prediction = the results of training can then be used to predict the merit of new animals, not contained in the training data set.
Implementation of Genomic Selection

Training 1:
Old Progeny Tested Bulls

Retraining each generation:
Old Bulls & New Progeny of Tested Bulls

Degree of genetic relationship between populations (ideally similar)

Calibration (Validation) (Estimation of r_g):
New Progeny of Tested Bulls

Application:
New Sire Candidates

Slide modified from Marc Thallman, US MARC
Breeding value prediction in Dairy Sires

Young sire Parent Average

Young sire Progeny Test

Young sire Genomic Selection

Birth

5 years; $50,000 cost

Birth; << $50,000 cost

Mendelian Sampling

Mendelian Sampling

Mendelian Sampling

Reliability 0.20

Reliability 0.80

Reliability 0.65

Van Eenennaam Tulare 2/13/2013

Graphic kindly provided by Gonzalo Rincon
Dairy industry suited to WGS

- High use of AI
- Mostly one breed
- Clear selection goal (total net merit)
- Large number of high accuracy A.I. sires for training
- Extensive, uniform collection of data on traits
- Central evaluation (AIPL) receiving genotypes
- Obvious way to increase rate of genetic gain
- AI companies funding the genotyping because they get a clear cost savings in terms of young sire program

Van Eenennaam Tulare 2/13/2013
Animal Biotechnology and Genomics Education
The Beef Cattle Industry

- Little use of AI
- Relatively few high accuracy sires for training
- Multiple competing selection goals – cow/calf, feedlot, processor – little data sharing between sectors
- Few/no records on many economically-relevant traits
- Many breeds, some small with limited resources
- Crossbreeding is important
- No centralized “national” cattle evaluation
- Not clear who should pay for testing
Translational Questions for the Beef Industry

? How many phenotypic records are required in the initial experiment estimating the effect of chromosome segments?

? How many markers are needed—50K, 800K, whole genome?

? How does the relationship between the training population and the selection candidate affect accuracy?

? How often do chromosome segment effects need to be re-estimated?

? Do predictions work across breeds?

? What is the value generated by the increased accuracy?

? Does this technology change optimal breeding program design?
What commercial products are out there for beef cattle producers?
The Power of the IGENITY® profile for Angus

The American Angus Association® through its subsidiary, Angus Genetics Inc.® (AGI), has a vision to provide Angus breeders with the most advanced solutions to their genetic selection and management needs.

1. Dry Matter Intake
2. Birth Weight
3. Mature Height
4. Mature Weight
5. Milk
6. Scrotal Circumference
7. Weaning Weight
8. Yearling Weight
9. Marbling
10. Ribeye Area
11. Fat Thickness
12. Carcass Weight
13. Tenderness
14. Percent Choice (quality grade)
15. Heifer Pregnancy
16. Maternal Calving Ease
17. Direct Calving Ease
18. Docility
19. Average Daily Gain
20. Feed Efficiency
21. Yearling Height

- Arthrogryposis Multiplex (AM)
- Neuropathic Hydrocephalus (NH)
- Bovine Viral Diarrhea – Persistently Infected (BVD PI)
- Coat Color
Lead Today with 50K

1. – Calving ease direct
2. – Birth weight
3. – Weaning weight
4. – Yearling weight
5. – Yearling height
6. – Mature weight
7. – Mature height
8. – Dry matter intake
9. – Residual feed intake
10. – Scrotal circumference
11. – Docility
12. – Calving ease maternal
13. – Milking ability
14. – Carcass weight
15. – Fat thickness
16. – Ribeye area
17. – Marbling score
18. – Tenderness

50K SNP chip assays
50,000 SNPs spread throughout genome
Black Angus Sire

GAR Predestined

Reg. No: 13395344
Calved: 8/16/1999
Tattoo: 8099
Semen: $25
Certificates: $20

Spring 2010 EPD

GAR Predestined:

From start to finish—conception to carcass—no other bull in the beef business today adds as much real value to cattle as Predestined. Ranking as the #1 bull for SB in the breed—our customers tell us that their Predestined-sired cattle return the most dollars to their pockets—they know that SB works.

Unlike any other 036 son, Predestined tones down size, adds depth of flank, superior feet and legs and a pleasant disposition to his offspring. His conception rate is high and he's been a standout in timed-AI programs. His progeny look good—he's thick and his heifers are fancy—and they always display additional shape and capacity. He ended 2006 as our top-seller and rightfully so—Predestined's many talents for creating value are for real.

Current Sires Percent Breakdown

<table>
<thead>
<tr>
<th>Registration #</th>
<th>Tenderness</th>
<th>Fat Thickness</th>
<th>Yield Grade</th>
<th>Ribeye Area</th>
<th>Carcass Weight</th>
<th>Percent Choice</th>
<th>Marbling</th>
</tr>
</thead>
<tbody>
<tr>
<td>13395344</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

GAR Predestined

<table>
<thead>
<tr>
<th>EPD</th>
<th>BW</th>
<th>WW</th>
<th>YW</th>
<th>ADG</th>
<th>DMI</th>
<th>NFI</th>
<th>CEM</th>
<th>MA</th>
<th>CW</th>
<th>FAT</th>
<th>REA</th>
<th>MS</th>
<th>TND</th>
<th>$B/$MVP鹌鹑蛋</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>4.1</td>
<td>53</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>26</td>
<td>0.046</td>
<td>0.59</td>
<td>1.07</td>
<td>-</td>
<td>10.78</td>
</tr>
<tr>
<td>Acc</td>
<td>0.84</td>
<td>0.97</td>
<td>0.96</td>
<td>0.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>0.86</td>
<td>0.82</td>
<td>0.81</td>
<td>0.82</td>
<td>0.84</td>
<td>-</td>
</tr>
<tr>
<td>% Rank</td>
<td>30</td>
<td>85</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55</td>
<td>10</td>
<td>90</td>
<td>90</td>
<td>1</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>MVP</td>
<td>1.3</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>0.45</td>
<td>0.97</td>
<td>0.04</td>
<td>8</td>
<td>33</td>
<td>55</td>
<td>0.07</td>
<td>0.92</td>
<td>1.52</td>
<td>80.78</td>
</tr>
<tr>
<td>% Rank</td>
<td>3</td>
<td>70</td>
<td>10</td>
<td>-</td>
<td>30</td>
<td>90</td>
<td>90</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>80</td>
</tr>
</tbody>
</table>
Need to integrate DNA information into National Cattle Evaluation (NCE)

“information from DNA tests only has value in selection when incorporated with all other available forms of performance information for economically important traits in NCE, and when communicated in the form of an EPD with a corresponding BIF accuracy. For some economically important traits, information other than DNA tests may not be available. Selection tools based on these tests should still be expressed as EPD within the normal parameters of NCE” (Tess, 2008).
Information sources for EPDs – DNA tests are another source of information to improve the accuracy of EPDs

- Pedigree Information
- Individual Performance Data
- +/- Progeny Performance Data
- DNA test Information

Time, Money and increased generation interval

EPDs

Modified from slide from Kent Anderson, Pfizer Animal Genetics, presented at BIF 2011
American Angus Association performs weekly evaluations with genomic data – recently updated to include new traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>Igenity</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving ease (CED)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Growth (BW WW YW Milk)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Residual Average Daily Gain (RADG)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Docility (DOC)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Yearling Scrotal/Height (SC,YH)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Mature Weight (MW)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Carcass (CWT MARB RIB FAT)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

So the question changed from “do they work (validation)” to “how well do they work (calibration or estimation of r_g)”?

Which Genomic Test is Best?

Now, thanks to High-Density (HD) 50K genomic technology for Angus, you can more dependably predict the genetic merit of young animals, before progeny information is available. But, what makes this genomic test superior?

High density vs. low density

The HD 50K platform includes more than 54,000 DNA markers, significantly more than IGENITY®, which utilizes only 384 markers. With greater coverage of the genetic makeup of Angus animals, no other DNA test provides more dependable predictions of genetic potential than HD 50K.
<table>
<thead>
<tr>
<th>Genetic Correlation (r)/(r^2%)/PE</th>
<th>h^2</th>
<th>Igenity/Neogen</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving Ease Direct</td>
<td>0.20</td>
<td>.47 (22%)</td>
<td>5</td>
</tr>
<tr>
<td>Birth Weight</td>
<td>0.42</td>
<td>.57 (32%)</td>
<td>4</td>
</tr>
<tr>
<td>Weaning Weight</td>
<td>0.20</td>
<td>.45 (20%)</td>
<td>5</td>
</tr>
<tr>
<td>Yearling Weight</td>
<td>0.20</td>
<td>.34 (12%)</td>
<td>2</td>
</tr>
<tr>
<td>Dry Matter Intake</td>
<td>0.31</td>
<td>.45 (20%)</td>
<td>3</td>
</tr>
<tr>
<td>Yearling Height</td>
<td>0.45</td>
<td>.38 (14%)</td>
<td>2</td>
</tr>
<tr>
<td>Yearling Scrotal</td>
<td>0.43</td>
<td>.35 (12%)</td>
<td>1</td>
</tr>
<tr>
<td>Docility</td>
<td>0.37</td>
<td>.29 (8%)</td>
<td>1</td>
</tr>
<tr>
<td>Milk</td>
<td>0.14</td>
<td>.24 (6%)</td>
<td>1</td>
</tr>
<tr>
<td>Mature Weight</td>
<td>0.55</td>
<td>.53 (28%)</td>
<td>2</td>
</tr>
<tr>
<td>Mature Height</td>
<td>0.82</td>
<td>.56 (31%)</td>
<td>1</td>
</tr>
<tr>
<td>Carcass Weight</td>
<td>0.31</td>
<td>.54 (29%)</td>
<td>5</td>
</tr>
<tr>
<td>Carcass Marbling</td>
<td>0.26</td>
<td>.65 (42%)</td>
<td>10</td>
</tr>
<tr>
<td>Carcass Ribeye Area</td>
<td>0.32</td>
<td>.58 (34%)</td>
<td>6</td>
</tr>
<tr>
<td>Carcass Backfat Thick</td>
<td>0.26</td>
<td>.50 (25%)</td>
<td>4</td>
</tr>
</tbody>
</table>

Angus predictions are not very accurate in Red Angus (Data provided by Dorian Garrick)

<table>
<thead>
<tr>
<th>Trait</th>
<th>Validating in American Angus</th>
<th>Validating in Red Angus</th>
</tr>
</thead>
<tbody>
<tr>
<td>BirthWt</td>
<td>0.64</td>
<td>0.27</td>
</tr>
<tr>
<td>WeanWt</td>
<td>0.67</td>
<td>0.28</td>
</tr>
<tr>
<td>YearlingWt</td>
<td>0.75</td>
<td>0.23</td>
</tr>
<tr>
<td>Fat</td>
<td>0.70</td>
<td>0.21</td>
</tr>
<tr>
<td>REA</td>
<td>0.75</td>
<td>0.29</td>
</tr>
<tr>
<td>Marbling</td>
<td>0.80</td>
<td>0.21</td>
</tr>
<tr>
<td>CalvEase (D)</td>
<td>0.69</td>
<td>0.14</td>
</tr>
<tr>
<td>CalvEase (M)</td>
<td>0.73</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Angus = ASREML 5-fold validation Red Angus = correlation
Training on de-regressed EPDs Saatchi et al (GSE)
Approximate genetic distance between breeds using data from the 2,000 Bull Project. Larry Keuhn, USDA MARC
http://www.nbcec.org/topics/BeefBreeds.pdf
So what about other breeds?
The following breed associations are working with Dorian Garrick (IA State) to develop their own 50K-based prediction equations

<table>
<thead>
<tr>
<th>Breed</th>
<th>Breed code</th>
<th># Training Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hereford</td>
<td>HER</td>
<td>1,725</td>
</tr>
<tr>
<td>Red Angus</td>
<td>RAN</td>
<td>296</td>
</tr>
<tr>
<td>Simmental</td>
<td>SIM</td>
<td>2,853</td>
</tr>
<tr>
<td>Brangus</td>
<td>BRG</td>
<td>896</td>
</tr>
<tr>
<td>Limousin</td>
<td>LIM</td>
<td>2,319</td>
</tr>
<tr>
<td>Gelbvieh</td>
<td>GVH</td>
<td>847</td>
</tr>
<tr>
<td>Maine Anjou</td>
<td>RDP</td>
<td>115</td>
</tr>
</tbody>
</table>
Predictions in Some Beef Breeds
(Data provided by Dorian Garrick)

<table>
<thead>
<tr>
<th># Records in training</th>
<th>Angus (3,500)</th>
<th>Hereford (800)</th>
<th>Simmental (2,800)</th>
<th>Gelbvieh (847)</th>
<th>Gelbvieh including Angus (1,181)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BirthWt</td>
<td>0.64</td>
<td>0.43</td>
<td>0.65</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>WeanWt</td>
<td>0.67</td>
<td>0.32</td>
<td>0.52</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>YearlingWt</td>
<td>0.75</td>
<td>0.30</td>
<td>0.45</td>
<td>0.21</td>
<td>NC</td>
</tr>
<tr>
<td>Milk</td>
<td>0.51</td>
<td>0.22</td>
<td>0.34</td>
<td>0.36</td>
<td>0.34</td>
</tr>
<tr>
<td>Fat</td>
<td>0.70</td>
<td>0.40</td>
<td>0.29</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>REA</td>
<td>0.75</td>
<td>0.36</td>
<td>0.59</td>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>Marbling</td>
<td>0.80</td>
<td>0.27</td>
<td>0.63</td>
<td>0.54</td>
<td>0.56</td>
</tr>
<tr>
<td>CED</td>
<td>0.69</td>
<td>0.43</td>
<td>0.45</td>
<td>NC</td>
<td>0.48</td>
</tr>
<tr>
<td>CEM</td>
<td>0.73</td>
<td>0.18</td>
<td>0.32</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>SC</td>
<td>0.71</td>
<td>0.28</td>
<td>NA</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Hereford announces genomic-enhanced EPDs (8/20/12)

The American Hereford Association (AHA) is the first beef breed to develop and market its own genomic predictions.

The AHA approach is the first of its kind to work with the scientific community and the National Beef Cattle Evaluation Consortium (NBCEC) to build its own training and validation population. This approach is important because AHA now has access to all of the genotypes, phenotypes and pedigrees, which will allow the Association and its members to continue to train and build the Hereford-specific panel.

Today more than 1,200 Herefords have been 50k genotyped and eight sires whole-genome sequenced. This population has been used to train and validate the Hereford-specific panel.

Dorian Garrick, Iowa State University Lush Chair in animal breeding and genetics and NBCEC executive director, has led the research and development.

According to Garrick AHA took a pro-active approach testing and validating the tools available to make sure when releasing a Hereford genomic product it was reliable and useful to AHA members. During this process the Association aligned itself with researchers and worked collaboratively with the NBCEC, U.S. Department of Agriculture (USDA) Meat Animal Research Center and other global Hereford associations.

In late June AHA transitioned its DNA testing to GeneSeek Inc. located in Lincoln, Neb. With this move, Hereford breeders have the option to utilize a 50k panel to obtain genomic information to enhance the accuracy of Hereford expected progeny differences (EPDs). The genomic information obtained is blended with conventional EPDs to produce genomic-enhanced EPDs (GE-EPDs). GE-EPDs are available on all traits reported by the AHA.

Limousin plans to start using DNA in EPDs in December 2012

Genomic information is the next step in technology for the beef industry. The North American Limousin Foundation has done extensive work over the last few years in cooperation with Igenity Inc. (now part of GeneSeek Inc.) to develop a Limousin specific 50,000 SNP (pronounced ‘snip’; single-nucleotide polymorphism) panel. This test goes beyond the DNA marker tests that were introduced years ago, which included only a small number of markers and were unable to generate values that could be incorporated in National Cattle Evaluations (NCE).

Each SNP alone does not reveal much information. It is only through study of the quantitative effects of a number of critically selected SNPs that generates molecular breeding values (MBVs) for each trait. These MBVs will be factored into the interim EPDs of the animal as well as the NCE based upon the correlation of the MBV to the trait. MBVs will be available for every EPD trait and will be beneficial through increased EPD accuracy of traits that are either difficult or expensive to measure such as Stayability and the carcass traits.

It is important to note that even though a genomic panel yields increased accuracy to EPDs, it is still only one tool in the genetic evaluation toolbox. Weights, measurements, ultrasounds and docility scores will still be vital to build a complete picture of an animal’s genetic merit. Those measures will also be crucial to the updating and expanding on the accuracy of the panel and its genetic correlations.

Once animal has had a sample submitted to NALF for the Limousin Genomic Profiler-Igenity® Enabled, the sample will be sent to GeneSeek, Inc. where a panel will be run. NALF will receive the MBVs which will then be factored into the animal’s EPDs starting in December 2012 and the NCE soon after. The animal’s owner will receive a report with the Igenity 1-10 scores on that animal similar to their earlier Beef Profile report. NALF would recommend that selection decisions be made based on the Genomic-Enhanced EPDs as they are a more accurate tool for determining genetic merit.

As a result of a multi-year collaborative effort, test development was funded by ASA members and staff, carcass merit cooperators, USDA, University of Illinois, University of Missouri, Montana State University, GeneSeek and the National Beef Cattle Evaluation Consortium.

The testing protocol and information are being disseminated to interested parties. The AAABA members and staff were pleased to announce that the future has arrived at ASA. We now offer a DNA test that, when incorporated into our genetic evaluation, can add significant enhancement to lower accuracy EPD. The results of a multi-year collaborative effort, test development was funded by ASA members and staff, carcass merit cooperators, USDA, University of Illinois, University of Missouri, Montana State University, GeneSeek and the National Beef Cattle Evaluation Consortium.

The testing protocol and information are being disseminated to interested parties. The AAABA members and staff were pleased to announce that the future has arrived at ASA. We now offer a DNA test that, when incorporated into our genetic evaluation, can add significant enhancement to lower accuracy EPD.

http://www.simmental.org/site/pdf/register/April%2012%20Register%20The%20Future%20is%20Here.pdf
The Future

NEXT EXIT
US cattle numbers ($x 10^6$)

- **Breeder**
 - Commercial cow/calf producer
 - Seedstock Cows: 1.1
 - Commercial Cows + replacements: 35.7
 - On feed at any one time: 13.6
 - Cattle fed per year in 2009: 25.6
 - Other Beef Animals (calves, steers, heifers and bulls): 43.2

- **Processing**
 - # US Beef operations: 766,350
 - Million Cows: 31.4
 - Average herd size: 41
Potential uses of genomic information for beef sectors

<table>
<thead>
<tr>
<th>Use</th>
<th>Seedstock</th>
<th>Commercial</th>
<th>Feedlot</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-assisted selection</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parentage</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recessive allele testing</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control of Inbreeding</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mate selection</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA-assisted management</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DNA-based purchasing</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Product differentiation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Traceability</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Only these sectors produce new animals
What will the future look like?

“It is perhaps the cumulative value derived from using DNA test information for multiple purposes (traceability, parentage, genetic defects, selection for difficult to measure traits, marker-assisted management, product differentiation), in combination with the rapidly-declining cost of genotyping, that will ultimately push the economics of DNA-based technologies over the tipping point towards more widespread industry adoption.”

USDA funded projects – competitive call for proposals: Part 1 (old CREES proposals)

- **Identification of molecular markers to improve fertility of beef cattle** (Thomas, CO) – finished 12/2011
 - >10,000 DNA samples and phenotypes on heifers

- **BIGS – Bioinformatics to implement genomic selection** (Garrick/Snelling/Golden)/ **Enhanced Bioinformatics to implement genomic selection** (BIGS) (Garrick, Dekkers, Fernando, Reecy, Rothschild) finishes 4/30/2014 See website http://bigs.anisci.iastate.edu/

- **Integrating DNA information into beef cattle production systems** (Van Eenennaam, CA) – finishes 12/2013
 - 7,000 DNA samples & weaning weight records, 4500 carcass records

Van Eenennaam Tulare 2/13/2013
USDA funded projects – competitive call for proposals: Part 2 (new NIFA AFRI proposals)

- **National program for genetic improvement of feed efficiency in beef cattle**
 (Taylor, MO) – finishes 4/2016 (http://www.beefefficiency.org)
 - Genotype ~ 2,400 head on HD chips; 7000 records FE records
 - $5 million, 5 year project; April 2011 – April 2016

- **Integrated program for reducing bovine respiratory disease (BRD) in beef and dairy cattle** (Womack, TX) – finishes 4/2016 (http://www.brdcomplex.org)
 - Collection and HD genotypes on 6,000 BRD case-control animals
 - $10 million, 5 year project; April 2011 – April 2016

- **Identification and management of alleles impairing heifer fertility while optimizing genetic gain in Angus cattle**
 (Patterson, Taylor, et al. MO; Van Eenennaam, CA) – finishes 12/17
 - Sequence up to 200 cattle from up to 10 different beef breeds
 - $3 million, 5 year project; Jan 2013 – December 2017
Industry structure may evolve to enable the exchange of information and value between the different sectors.

For widespread technology adoption, breeders need to be adequately rewarded for making DNA investments and selection decisions for traits that benefit the different sectors of the beef industry.

Ideally cattle would be genotyped ONCE early in life and genotypes shared with downstream production sectors to derive the maximum value from the fixed DNA collection and extraction costs.

<table>
<thead>
<tr>
<th>Cattle industry Sector</th>
<th>Type of DNA product // DNA information access required</th>
<th>Cost?? ($US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus seedstock/AI bulls</td>
<td>Full genome sequence</td>
<td>$250</td>
</tr>
<tr>
<td>Seedstock/bull multiplier</td>
<td>HD 770 K genotype</td>
<td>$50</td>
</tr>
<tr>
<td>Registered females and stock bulls for commercial sector</td>
<td>50K genotype + parentage + single gene traits/recessives</td>
<td>$25</td>
</tr>
<tr>
<td>Commercial cattle – Marker-assisted management (MAM), replacement heifer selection</td>
<td>Imputation LD chip + parentage + single gene traits/recessives</td>
<td>$10</td>
</tr>
<tr>
<td>Feedlot cattle purchasing, sorting and marker-assisted management (MAM)</td>
<td>Access genotypes from supplier (subset of LD imputation chip).</td>
<td><$1</td>
</tr>
<tr>
<td>Traceability for voluntary labelling e.g. Angus beef</td>
<td>Access genotypes from supplier (subset of LD imputation chip).</td>
<td><$1</td>
</tr>
<tr>
<td>Traceability for disease outbreak/contaminated meat</td>
<td>Access genotypes from supplier (subset of LD imputation chip).</td>
<td><$1</td>
</tr>
<tr>
<td>Year</td>
<td>2003</td>
<td>2008</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Single Marker/Single Trait</td>
<td>- Single marker/single trait</td>
<td>- Multimarker tests for a few traits reported in a variety of formats</td>
</tr>
<tr>
<td>Reported Genotypes</td>
<td>- Limited adoption</td>
<td>- No tie between DNA test results and national genetic evaluation or breed associations</td>
</tr>
<tr>
<td>Single Marker Accounted for Small Amount of Genetic Variation</td>
<td>- Technology oversold</td>
<td>- Tests accounted for < 10% additive genetic variation</td>
</tr>
<tr>
<td>Limited Adoption</td>
<td>- Technology oversold</td>
<td>- Limited validation</td>
</tr>
<tr>
<td>Technology Oversold</td>
<td>- Technology oversold</td>
<td>- Technology not in a form producers could use</td>
</tr>
</tbody>
</table>
CONCLUSION: Ramifications of DNA-enabled selection

- The benefits of genomic selection are best captured in well-structured industries that are already making significant genetic progress
- May encourage more vertical integration to collect phenotypes to enable predictions for ERTs for all sectors
- May see genetic evaluations developed for novel traits – if large enough populations can be amassed and data shared
- May see breeds/countries start to share data – especially with HD chips and whole genome sequencing
- Will beef follow the pig/poultry model of vertically-integrated breeding companies owning all sectors?
Breeds/groups that can organize themselves and **technologically** and **structurally** to seamlessly obtain and marry entire supply chain phenotypes and genotypes and take advantage of the rapidly-declining cost of genotyping to capture the cumulative value derived from using genomic information for multiple purposes (selection, parentage, genetic defects, marker-assisted management, product differentiation, traceability) will be ideally positioned to fully realize the nascent potential of genomic information.
Thanks for inviting me!

National Research Initiative competitive grant no. 2009-55205-05057 (“Integrating DNA information into beef cattle production systems”) from the USDA National Institute of Food and Agriculture Animal Genome Program.
Questions?