What is the value of DNA testing?

Alison Van Eenennaam, Ph.D.

Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis <u>alvaneenennaam@ucdavis.edu</u> (530) 752-7942

animalscience.ucdavis.edu/animalbiotech

Van Eenennaam 3/30/2010

Animal Genomics and Biotechnology Education

The bovine genome is similar in size to the genomes of humans, with an estimated size of 3 billion base pairs.

50K SNP chip assays 50,000 **SNPS** spread throughout genome

? This is a picture of D_A.

ひ か べ

 \sim

Given this information.....

? Which do you think is my dog?

? Who would you prefer to give this talk?

- 1. Alison
- 2. Wayne

DNA testing has been successfully used to test for simple (qualitative) traits – genetic defects, coat color, polled/horned

	Igenity	Pfizer	MMI
TRAIT	"Profile"	"50K"	"Breed-Tru"
Average Daily Gain	X	X	X
Net Feed Intake		X	
Dry matter intake		X	
Residual feed intake	Х		
Tenderness	X	X	X
Calving Ease (Direct)		X	
Birth weight		X	
Weaning Weight		X	
Yearling Weight	X		
Calving ease (maternal)	X	X	
Milking Ability		X	
Heifer pregnancy rate	X		
Docility	X		
Stayability	X		
Carcass weight		X	
Backfat thickness	X	X	X
Ribeye area	X	X	X
Marbling score	X	X	X
Yield Grade	X		X
Percent Choice	X		
COST	US\$58-78	US\$69-129	US\$65/145

? Why do you think producers are currently using DNA tests?

- 1. Strictly marketing
- 2. Getting DNA sample is easier than performance recording
- 3. Believe DNA "works" better than EBVs
- 4. Are using DNA results in conjunction with other data (e.g. EBVs) for marker-assisted selection

Which sector do you think stands to benefit the most from DNA testing?

- 1. Breeders
- 2. Commercial producers
- 3. Backgrounders
- 4. Feedlotters
- 5. Processors

	IGENITY News Additional Resources	STAKEHOLDER	GOAL S/NEEDS	VALUABLE INSIDE INFORMATION FROM AN IGENITY PROFILE
	Events Calendar Order a Kit Results Customer Login Contact IGENITY Forms Site Map Site Map	Seedstock	 Improve feed efficiency Improve fertility and longevity Avoid temperament problems Differentiate breeding stock Improve breed shortcomings Enhance breed strengths Select for antagonistic traits Uncover new marketing opportunities Increase weaning weights 	 Residual feed intake Heifer pregnancy rate Stayability (longevity) Calving ease Docility Carcass composition traits Horned/polled Coat color
CALIFORNIA) igenity	Cow/calf	 Improve feed efficiency Improve fertility and longevity Confirm superior genetic potential in bulls Select calving ease heifers and sires Avoid temperament problems Differentiate calves at market or select for retained ownership Select replacement heifers with confidence Validate management practices Increase weaning weights and efficiently raise heavy calves Improve carcass traits Track sire performance 	 Residual feed intake Heifer pregnancy rate Stayability Calving ease Docility Carcass composition traits BVD-PI status Commercial Ranch Genetic Evaluation
		Backgrounding	 Confident purchasing decisions Most efficient sorting and management Confirmation of superior genetics Produce value-added and healthy calves for resale 	 Residual feed intake Carcass composition traits (for pass-along value) BVD-PI status
		Feeder	 Confident purchasing decisions Optimize end points Use effective sorting/management tools Better sort for grid requirements Consistent cattle Manage antagonistic traits 	 Residual feed intake Carcass Yield grade and quality grade components Tenderness potential BVD-PI status
		Processor	 Confident purchasing decisions Meet branded program guidelines Sorting cattle based on individual traits prior to slaughter Minimize waste and inefficiencies 	 Carcass composition traits Tenderness potential
		Nothing communi	icates value throughout the production chain	like IGENITY.
	Van Eenennaam 3/30/2010 ht	tp://us.igenity	y.com/beef/Applications.	aspx

IGENITY[®] Price Guide for beef

USD\$

\$5.00

GENITY* Profile \$38.0 Carcass Composition Tenderness, % Choice/Quality Grade, Yield Grade, Ribeye Area, Fat Thickness, Marbling. Maternal Traits Heifer Pregnancy Weight, Calving Ease, Stayability Docility Average Daily Gain Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only \$5.0 Add Coat Color to the IGENITY Profile \$5.0	0
Carcass Composition Tenderness, % Choice/Quality Grade, Yield Grade, Ribeye Area, Fat Thickness, Marbling. Maternal Traits Heifer Pregnancy Weight, Calving Ease, Stayability Docility Average Daily Gain Add BVD PI to the IGENITY Profile Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0	
Tenderness, % Choice/Quality Grade, Yield Grade, Ribeye Area, Fat Thickness, Marbling. Maternal Traits Heifer Pregnancy Weight, Calving Ease, Stayability Docility Average Daily Gain Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0	
Maternal Traits Heifer Pregnancy Weight, Calving Ease, Stayability Docility Average Daily Gain Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0	
Heifer Pregnancy Weight, Calving Ease, Stayability Docility Average Daily Gain Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0 Add Multi-Size Parentage to the IGENITY Profile \$10.0	
Docility Average Daily Gain Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0 Add Multi-Size Parentage to the IGENITY Profile \$10.0	
Average Daily Gain Add BVD PI to the IGENITY Profile Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0 Add Multi-Size Parentage to the IGENITY Profile \$10.0	
Add BVD PI to the IGENITY Profile \$3.0 Available for tissue collectors only \$5.0 Add Coat Color to the IGENITY Profile \$5.0 Add Multi-Size Parentage to the IGENITY Profile \$10.0	
Available for tissue collectors only Add Coat Color to the IGENITY Profile \$5.0 Add Multi-Size Parentege to the IGENITY Profile \$10.0	0
Add Coat Color to the IGENITY Profile \$5.0	
Add Multi-Size Parentage to the ICENITY Profile \$10.0	0
au muit-one ratentage to the locini r rione oro.o	0
Add Myostatin to the IGENITY Profile \$15.0	0
Add Arthrogryposis Multiplex to the IGENITY Profile \$26.0	0
Add Feed Efficiency to IGENITY Profile \$20.0	0
Available for Bos indicus and Bos taurus.	
Add Horned/Polled to IGENITY Profile \$50.0	0
See the IGENITY Order Form for breed specifications.	

IGENITY Multi-Sire Parentage without the IGENITY Profile	\$25.0
IGENITY Arthrogryposis Multiplex without the IGENITY Profile	\$26.0
Tissue Collection Tag Multiples of 50	\$125.0
RFID Tissue Collection Tag Multiples of 50	\$225.0
Commercial Ranch Genetic Evaluation	\$35.0

Additional Traits

The IGENITY profile. Inside information to help you

achieve goals faster.

IGENITY sample collection kits can be ordered from www.igenity.com.

IGENITY is a registered trademark of Merial. 02009 Merial Limited. Duluth, GA. All rights reserved. Prices valid after 03/01/09. Prices are subject to change at any time.

Lead Today with 50K

- 1. Birth weight
- 2. Weaning weight
- 3. Weaning maternal (milk)
- 4. Calving ease direct
- 5. Calving ease maternal
- 6. Marbling
- 7. Backfat thickness
- 8. Ribeye area
- 9. Carcass weight
- 10. Tenderness
- 11. Postweaning average daily gain
- 12. Daily feed intake
- 13. Feed efficiency (net feed intake)

Pfizer Animal Health Animal Genetics

Lead Today with 50K

Take selection and marketing decisions to the next level by taking advantage of HD 50K, the first commercially available predictions utilizing a High-Density panel of more than 50,000 markers. Available initially for Angus owners, a one-time sample submission provides the opportunity for ongoing access to MVPs for future unique traits and technology advancements. The suite of 14 genomic trait predictions, including the beef industry's first DNA-based economic index, provides MVPs for economically important traits not available as EPDs like average daily gain, dry matter intake, net feed intake and tenderness, as well as many that complement EPDs.

For more information about HD 50K:

HD 50K Overview

HD 50K Customer Reporting Overview

FAQs

HD 50K Television Ad

Post a Question

<u>Cost per test</u> 1-24 US\$129 25 + US\$119 <u>Existing samples</u> <u>reanalyzed</u> 1-24 US\$ 79 25+ US\$ 69

Ne	we	8	M	ed	lia
THE	113	er.	-17.	.u	ца

Press Releases In the News DNAge E-newsletter

Location & Sales

USA Distributors Education links Ag links Webinars

Resources

Testing & Results

Test Kit Order Form

Users need to know:

Does it work?
Is it useful?
Does it pay?

How can we begin to think about the value associated with DNA testing?

What is it being used for?

DNA-assisted **sorting** to enable management of groups to decrease costs or increase income from sorted groups or target specific markets OR

DNA-assisted **selection** to improve accuracy of traits already in selection objective, or to enable inclusion of new difficult-to-measure traits

VanEomics"

Do you have information to determine -Does it Work?

Independent validation studies carried out in three countries have found that this Ychromosome-based test is 100% accurate

X

GENDER BENDER® TEST

- Do you have information to determine
- -Is it Useful?
- Would it be a useful to sort heifers and steers into separate pens?

GENDER BENDER® TEST

USE: Sort pens into steers and heifers using the DNA-gender test – 100% accurate!!!!!

Do you have information to determine -Does it Pay?

VanEomics[™]

PRO-CHOICE® TEST USE: Lets you sort cattle into different marbling score groups Do you have information to determine -Does it work? -Is it possible? -Does it pay?

VanEomics[™] PRO-CHOICE® TEST

Does it work?

Independent validation studies carried out in three countries have reported significant association of MBV with trait

- 1. Variance of the **MBV** (σ^2_{MBV}) = 100
- 2. Regression coefficient of phenotype on MBV (b) = 1

Hypothetical example σ_{MBV} =10, Regression coefficient (b) = 1

				Phenotypic parameters				Genetic Parameters			
Test	Trait	Data	Ν	σ^2_P	b (se)	Р	ľp	r_{P}^{2}	h ² (se)	r _g (se)	r_g^2
Pfizer MVP	IMF	1	Phenot = 3,5	4 2.035	0.255 (0.30)	0.20	0.033 (0.04)	0.001 (0.003)	0.39 (0.06)	0.054 (0.06)	0.003 (0.007)
Marbling			MVP = 70	0.035							
		2	Phenot = $3,52$	4 0.978	0.231 (0.24)	0.17	0.038 (0.04)	0.001 (0.003)	0.37 (0.06)	0.064 (0.07)	0.004 (0.009)
			MVP = 60	8 0.027							
		3	Phenot = 8'	6 0.767	0.028 (0.33)	0.47	0.005 (0.06)	0.000 (0.001)	0.23 (0.10)	0.011 (0.13)	0.000 (0.003)
			MVP = 2	3 0.026							
		4	Phenot = 8'	8 0.717	0.415 (0.39)	0.14	0.072 (0.07)	0.005 (0.010)	0.37 (0.11)	0.121 (0.11)	0.015 (0.027)
			MVP = 2	.5 0.022							
Pfizer MVP	MSA	1	Phenot = $1,4$	4 0.281	0.218 (0.20)	0.14	0.077 (0.07)	0.006 (0.011)	0.35 (0.09)	0.131 (0.12)	0.017 (0.031)
Marbling	MS		MVP = 7	0 0.035	0.171 (0.15)	0.12	0.057 (0.05)	0.002 (0.000)	0.27 (0.00)	0.000 (0.00)	0.000 (0.015)
		2	Phenot = 1,80 MUD = 60	0.230	0.171 (0.15)	0.13	0.057 (0.05)	0.003 (0.006)	0.37 (0.08)	0.096 (0.08)	0.009 (0.015)
		2	MVP = 0	0 0.027	0.024 (0.22)	0.46	0.000 (0.08)	0.000 (0.001)	0.21 (0.12)	0.016 (0.14)	0.000 (0.004)
		3	MVP = 2	3 0.026	0.024 (0.22)	0.40	0.009 (0.08)	0.000 (0.001)	0.51 (0.15)	0.010 (0.14)	0.000 (0.004)
		4	Phenot = 6	6 0.229	0.262 (0.23)	0.13	0.080 (0.07)	0.006 (0.011)	0.19 (0.11)	0.189 (0.17)	0.036 (0.064)
			MVP = 22	0.022							
Pfizer MVP	LDSF	1	Phenot = 3,32	2 0.433	0.240 (0.20)	0.11	0.049 (0.04)	0.002 (0.004)	0.08 (0.04)	0.170 (0.14)	0.029 (0.048)
Tenderness			MVP = 65	9 0.088							
		2	Phenot = $3,2$	4 0.612	0.662 (0.20)	< 0.001	0.154 (0.04)	0.024 (0.012)	0.30 (0.06)	0.283 (0.08)	0.080 (0.045)
			MVP = 5	0.160							
		3	Phenot = 73	0.658	0.304 (0.35)	0.19	0.064 (0.07)	0.004 (0.009)	0.26 (0.10)	0.126 (0.14)	0.016 (0.035)
			MVP = 2	3 0.142							
		4	Phenot = 70	0.871	1.658 (0.40)	<0.001	0.302 (0.07)	0.091 (0.042)	0.31 (0.10)	0.547 (0.13)	0.299 (0.142)
	NITT		MVP = 2	5 0.142	0.000 (0.10)	0.01	0.000 (0.04)	0.000 (0.007)	0.14 (0.11)	0.240 (0.15)	0.052 (0.054)
PIIZET MVP	NFI	1	Phenot = 70	5 0.840	0.300 (0.13)	0.01	0.092 (0.04)	0.008 (0.007)	0.14 (0.11)	0.248 (0.15)	0.062 (0.074)
reed Em.		2	MVP = /0	0.079	0.266 (0.15)	0.01	0.104 (0.04)	0.011 (0.008)	0.21 (0.12)	0.222 (0.11)	0.054(0.051)
		2	MUD = 6'	0.08/	0.300 (0.15)	0.01	0.104 (0.04)	0.011 (0.008)	0.21 (0.15)	0.232 (0.11)	0.054 (0.051)
		3	$Phenot = 2^{4}$	1 0.030	-0.074 (0.27)	0.81	-0.020 (0.07)	0.000 (0.003)	0.21 (0.25)	-0.044 (0.16)	0.002 (0.014)
		5	MVP = 2	3 0.082	-0.074 (0.27)	0.01	-0.020 (0.07)	0.000 (0.003)	0.21 (0.23)	-0.044 (0.10)	0.002 (0.014)
		4	Phenot = 2	5 0.958	-0.131 (0.33)	0.86	-0.032 (0.07)	0.001 (0.004)	0.37 (0.26)	-0.053 (0.14)	0.003 (0.015)
		т	MVP = 2	5 0.056	0.101 (0.00)	0.00	0.002 (0.07)	0.001 (0.004)	0.07 (0.20)	0.000 (0.14)	0.000 (0.010)
				01000							

VanEomics[™]

PRO-CHOICE® TEST USE: Lets you sort cattle into different marbling score groups – Is it Useful **Possible Management Options** - Different days on feed - Different cost rations

- Different implant strategy
- Target different markets

VanEomics[™] PRO-CHOICE® TEST

USE: Lets you sort cattle into different marbling score groups

Does it Pay?

If a DNA marker test is \$10/head - to break even, the management measures implemented based on the DNA test results need to either save \$10/head in costs or result in an extra \$10/head

FEATURES

- Contains 128 DNA markers where each marker is highly associated with expression of marbling score
- Measures the cumulative effects of all 128 markers associated with marbling
- Results are expressed as the Molecular Genetic Value (MGV) which can be utilized to rank animals by their genetic potential
- Animals can be tested at any age
- Validated in Angus (validation in other breeds is underway)

BENEFITS

- The most powerful and comprehensive DNA selection tool currently available for marbling
- Accounts for a significant proportion of total observed genetic variation for marbling
- Results are easy to utilize and incorporate into any existing breeding program
- Can be used to make early selection and breeding decisions
- Provides accurate and reliable results for ranking and/or selection of animals

TRU-MARBLING

One in a series of break-through products that will advance breeding practices in the cattle industry, *Tru-Marbling*[™] is a powerful and comprehensive DNA selection tool that can determine the genetic potential of animals to express marbling. In a collaborative research program between Cargill and MMI Genomics, an innovative scientific approach was used on over 4000 feedlot animals to identify the majority of regions throughout the bovine genome that have an effect on this economically important trait.

Tru-Marbling[™] is a DNA-based genetic test that contains a panel of 128 unique DNA markers, each one highly associated with the expression for marbling score and quality grade. By measuring the cumulative effects for each of these 128 markers, *Tru-Marbling*[™] accounts for a significant proportion of the total genetic variation for this complex metabolic trait—the first DNA-based product to do so!

Tru-Marbling[™] is an advanced and revolutionary tool that will allow cattle producers to make early breeding decisions that **increase the accuracy** of selection and **decrease the age** at which animals can be selected.

The results? Rapid improvement of marbling within herds and the ability to determine the "Tru" genetic potential of animals.

<u>PROVEN RESULTS</u>

Tru-Marbling[™] has been validated in both commercial cross-bred feeder cattle populations and in Angus cattle.

The validation in Angus was conducted using samples from the National Carcass Merit Project, representing Angus sires bred to Angus-based commercial cows. While this is a small population of animals, the data indicate that *Tru-Marbling*[™] accounts for 70% of the genetic variation observed in this population.

No. of samples:	414
Heritability*:	0.36
No. of markers:	128
Phenotypic variation explained (R ²)**:	0.25
As a percent of Heritability	70%
* Angus National Cattle Evaluation, Spring 2007	Cold Products
** estimated from a model that included contemporary arour	an MGV

Tru-Marbling[™] has also been validated against commercial cross-bred feeder cattle populations.

Explains 25% of the phenotypic variation (70% of the genetic variation) in marbling with 128 markers

"TRU-MARBLING" EXPLAINS ~25% of PHENOTYPIC MARBLING SCORE VARIATION

So even a test that is 100% accurate will only explain 36% of the phenotypic variation

Characteristics of the four marker-assisted management sort groups

Table 1. Reimplant and Carcass Characteristics of the four sort groups.									
	Group 1	Group 2	Group 3	Group 4					
Reimplant									
Weight	1109	1071	987	1096					
Level of Fatness	+++	++	Avg.	+++					
MSMGV	2.9	1.48	-1.59	23.0					
Carcass									
HCW	831	883	908	863					
REA	13.2	14.1	14.6	13.2					
BF	0.47	0.45	0.43	0.53					
MS	398	407	418	486					
Yield	63.0	63.9	64.8	63.8					
YG	3.0	2.9	2.8	3.3					
<u>% Choice</u>	40.0	42.7	45.7	77.4					
Data is based on 88,090	head.								

Data presented by Bill Kolath, Cargill Meat Solutions, BIF 2009

Van Eemenmaam 3//22/2010

Animal Biotechnology and Genomics Education

SUMMARY: Information needed to determine the value of DNA tests for marker-assisted management

- 1. Variance of the MBV (σ^2_{MBV})
- 2. Regression coefficient of phenotype on MBV (b)
- 3. How the group is to be sorted (e.g. sort into two halves; or remove bottom 5%)
- 4. Average phenotype of the group prior to sorting
- 5. Cost savings or extra value associated with the grouping /culling
- 6. Cost of the test

Marker-assisted selection (MAS)

The process of using the results of DNA testing to assist in the selection of individuals to become parents in the next generation. The genotypic information provided by DNA testing should help to improve the accuracy of selection and increase the rate of genetic progress by identifying animals carrying desirable genetic variants for a given trait at an earlier age.

? For which objective trait do you think marker-assisted selection would have the greatest value?

- 1. Sale liveweight
- 2. Dressing %
- 3. Saleable meat %
- 4. Fat depth (rump)
- 5. Marbling score
- 6. Cow weaning rate
- 7. Cow survival rate
- 8. Cow weight
- 9. Calving ease
- 10. Tenderness

VanEomics[™]

PRO-CHOICE® TEST USE: Lets you more accurately select those animals carrying good genes for marbling! Do you have information to determine Does it work?

What is the accuracy of the test (i.e. genetic correlation between MBV and the trait)?

FEATURES

- Contains 11 DNA markers where each marker is highly associated with expression of tenderness in meat products
- Measures the cumulative effects of all 11 markers associated with meat tenderness
- Results are expressed as the Molecular Genetic Value (MGV) which can be utilized to rank animals by their genetic potential
- Animals can be tested at any age
- Validated in Angus (validation in other breeds is underway)

BENEFITS

- The most powerful and comprehensive DNA selection tool currently available for tenderness
- Accounts for a significant proportion of total observed genetic variation for tenderness
- Results are easy to utilize and incorporate into any existing breeding program
- Can be used to make early and accurate selection and breeding decisions
- Provides accurate and reliable results for ranking and/or selection of animals

HANT CREMENCE. BAC

1756 Picasso Avenue Davis, CA 95618 1.800.311.8808 www.breedtru.com

TRU-TENDERNESS

One in a series of break-through products that will advance breeding practices in the cattle industry, *Tru-Tenderness*[™] is a powerful and comprehensive DNA selection tool that can determine the genetic potential of animals to produce tender meat. In a collaborative research program between Cargill and MMI Genomics, an innovative scientific approach was used on over 4000 feedlot animals to identify the majority of regions throughout the bovine genome that have an effect on this valuable consumer trait.

Tru-Tenderness[™] is a DNA-based genetic test that contains a panel of 11 unique DNA markers, each one highly associated with expression for tender meat. By measuring the cumulative effects for each of these 11 markers, *Tru-Tenderness*[™] accounts for a substantial proportion of the total genetic variation for this complex metabolic trait.

Since tenderness can only be measured in harvested cattle it is difficult, time consuming and expensive to make genetic progress for this trait using traditional genetic improvement tools. *Tru-Tenderness*^{**} changes this paradigm by allowing producers to accurately assess the genetic potential of their breeding stock to produce tender meat. In addition, *Tru-Tenderness*^{**} also shortens the interval for making genetic progress because it can be used to test animals of any age.

Tru-TendemessTM is an advanced and revolutionary tool that will allow cattle producers to make early breeding decisions that **increase the accuracy** of selection and **decrease the age** at which animals can be selected.

The results? Rapid improvement of tenderness within herds and the ability to determine the "Tru" genetic potential of animals.

PROVEN RESULTS

Tru-Tenderness[™] has been validated in Angus using samples from the National Carcass Merit Project, representing Angus sires bred to Angus-based commercial cows. While this is a small population of animals, the data indicate that *Tru-Tenderness*[™] accounts for 100% of the genetic variation observed in this population as measured by Warner-Bratzler shear force.

No. of samples:	407	
Heritability*:	0.35	
No. of markers:	11	
Phenotypic variation explained (R ²)**:	0.38	K
As a percent of Heritability * as estimated in Minick et al, 2004, Can. J. Anim. Sci. 84-59	100%	

100% accurate

Explains 100% of the genetic variation in marbling with 11 markers

🖉 DNA markers - Beef CRC - Beef Genetic Technologies - Windows Internet Explorer	
G V + http://www.beefcrc.com.au/DNAmarkers	💌 🐓 🗙 beef crc valida
File Edit View Favorites Tools Help	
😭 🏟 声 DNA markers - Beef CRC - Beef Genetic Technologies	🔓 • 🗟 • 🖶
The Cooperative Research Centre for Beef Genetic Technologies	Home Latest news Publications Products Search:
Who we are DNA markers High quality beef Reducing feed costs Animal we	Ifare Female reproduction Education
Australian beef DNA results SmartGene for Beef	Success Stories
Statement on DNA markers Genomics glossary	Beef CRC project aimed at improving beef industry profitability gains national recognition
	previous next
Home > DNA markers	
DNA markers	Search the Livestock Library > O Gain access to the latest scientific

Professor Mike Goddard Beef CRC Chief Scientist (03) 9479 5438 or Mike.Goddard@dpi.vic.gov.au and extension articles relevant to livestock industries.

Subscribe to Receive Publications >

Links to Videos >

				Phenotypic parameters				Genetic Parameters				
Test	Trait	Data	Ν		σ^2_P	b (se)	Р	ľp	r_P^2	h ² (se)	r _g (se)	$\mathbf{r_g}^2$
Pfizer MVP	IMF	1	Phenot =	3,594	2.035	0.255 (0.30)	0.20	0.033 (0.04)	0.001 (0.003)	0.39 (0.06)	0.054 (0.06)	0.003 (0.007)
Marbling			MVP =	703	0.035							
		2	Phenot =	3,524	0.978	0.231 (0.24)	0.17	0.038 (0.04)	0.001 (0.003)	0.37 (0.06)	0.064 (0.07)	0.004 (0.009)
			MVP =	668	0.027							
		3	Phenot =	876	0.767	0.028 (0.33)	0.47	0.005 (0.06)	0.000 (0.001)	0.23 (0.10)	0.011 (0.13)	0.000 (0.003)
			MVP =	253	0.026							
		4	Phenot =	878	0.717	0.415 (0.39)	0.14	0.072 (0.07)	0.005 (0.010)	0.37 (0.11)	0.121 (0.11)	0.015 (0.027)
			MVP =	225	0.022							
Pfizer MVP	MSA	1	Phenot =	1,454	0.281	0.218 (0.20)	0.14	0.077 (0.07)	0.006 (0.011)	0.35 (0.09)	0.131 (0.12)	0.017 (0.031)
Marbling	MS		MVP =	710	0.035							
		2	Phenot =	1,808	0.236	0.171 (0.15)	0.13	0.057 (0.05)	0.003 (0.006)	0.37 (0.08)	0.096 (0.08)	0.009 (0.015)
			MVP =	670	0.027							
		3	Phenot =	594	0.211	0.024 (0.22)	0.46	0.009 (0.08)	0.000 (0.001)	0.31 (0.13)	0.016 (0.14)	0.000 (0.004)
			MVP =	253	0.026							
		4	Phenot =	636	0.229	0.262 (0.23)	0.13	0.080 (0.07)	0.006 (0.011)	0.19 (0.11)	0.189 (0.17)	0.036 (0.064)
			MVP =	225	0.022							
Pfizer MVP	LDSF	1	Phenot =	3,322	0.433	0.240 (0.20)	0.11	0.049 (0.04)	0.002 (0.004)	0.08 (0.04)	0.170 (0.14)	0.029 (0.048)
Tenderness			MVP =	659	0.088							
		2	Phenot =	3,254	0.612	0.662 (0.20)	< 0.001	0.154 (0.04)	0.024 (0.012)	0.30 (0.06)	0.283 (0.08)	0.080 (0.045)
			MVP =	585	0.160	0.004 (0.0 5)		0.0 <i>ct</i> (0.0 m)	0.004 (0.000)	0.04 (0.40)	0.104/0.110	0.04.6 (0.00.5)
		3	Phenot =	785	0.658	0.304 (0.35)	0.19	0.064 (0.07)	0.004 (0.009)	0.26 (0.10)	0.126 (0.14)	0.016 (0.035)
			MVP =	253	0.142	1 (58 (0.40)	<0.001	0.202 (0.07)	0.001 (0.042)	0.21 (0.10)	0.547 (0.12)	0.200 (0.1.12)
		4	Phenot =	762	0.8/1	1.658 (0.40)	<0.001	0.302 (0.07)	0.091 (0.042)	0.31 (0.10)	0.547 (0.13)	0.299 (0.142)
Dfines MUD	NET	1	MVP =	223	0.142	0.200 (0.12)	0.01	0.002 (0.04)	0.008 (0.007)	0.14 (0.11)	0.248 (0.15)	0.062 (0.074)
PHZer MVP	NFI	1	Phenot =	/85	0.840	0.300 (0.13)	0.01	0.092 (0.04)	0.008 (0.007)	0.14 (0.11)	0.248 (0.15)	0.062 (0.074)
reed EIII.		2	Dhonot -	697	0.079	0.266 (0.15)	0.01	0.104 (0.04)	0.011 (0.008)	0.21 (0.12)	0.222 (0.11)	0.054 (0.051)
		2	MUD -	08/ 671	0.08/	0.300 (0.15)	0.01	0.104 (0.04)	0.011 (0.008)	0.21 (0.13)	0.232 (0.11)	0.054 (0.051)
		2	Dhonot -	254	1 1 1 0	0.074 (0.27)	0.91	0.020 (0.07)	0.000 (0.002)	0.21 (0.25)	0.044 (0.16)	0.002 (0.014)
		3	MUP -	254	0.082	-0.074 (0.27)	0.01	-0.020 (0.07)	0.000 (0.005)	0.21 (0.25)	-0.044 (0.10)	0.002 (0.014)
			Dhenot -	200	0.062	-0.131 (0.22)	0.86	-0.032 (0.07)	0.001 (0.004)	0.37 (0.26)	-0.053 (0.14)	0.003 (0.015)
		4	MUD -	215	0.930	-0.131 (0.33)	0.00	-0.052 (0.07)	0.001 (0.004)	0.57 (0.20)	-0.055 (0.14)	0.003 (0.015)
				443	0.030							

PFIZER		% Gene	tic variat	ion ex	plained
ANIMAL		Pfizer	Australian	Pfizer	
GENETICS Trait	h2	MVP	Calibration	50K	Third party
		(2009)	(2009)	(2010)	calibration?
Average Daily Gain	0.28			30%	?
Net Feed Intake	0.39	9%	6%	12%	?
Dry matter intake	0.39			11%	?
Tenderness	0.37	24%	3%*	26%	?
Calving Ease (Direct)	0.1			22%	?
Birth weight	0.31			28%	?
Weaning Weight	0.25			32%	?
Calving ease (maternal)	0.1			40%	?
Milking Ability	0.25			27%	?
Carcass weight	0.39			29%	?
Backfat thickness	0.36			40%	?
Ribeye area	0.4			29%	?
Marbling score	0.37	7%	1.7%*	34%	?

* The test was not significantly associated with the target trait

Van Eenennaam 1/23/10

Let's assume "PRO-CHOICE" TEST DOES EXPLAIN 34% of GENETIC COMPONENT OF MARBLING

Animal Biotechnology and Genomics Education

How much would a test that explains 34% of the additive genetic variation in marbling score improve the accuracy of MS EBVs?

Information available	Marbling Score Accuracy
Base phenotypic records available for use as selection criteria assumed to be those recorded by breeders including ultrasound on dam, sire, individual and 20 half- sib progeny	.36
DNA test information alone	.58
DNA test information + base phenotypic records	.69

P How much would you pay for a DNA test that increases marbling score accuracy from 0.36 to 0.69?

- 1. \$0
- 2. **\$1-20**
- 3. **\$20-50**
- 4. \$50-100
- 5. **\$ 100-200**
- 6. **\$200-500**
- 7. >\$500

VanEomicsTM PRO-CHOICE® TEST Is it useful?

Long Fed / CAAB Index - Profit Drivers

VanEomicsTM PRO-CHOICE® TEST Is it useful?

VanEomicsTM PRO-CHOICE® TEST Does it pay?

- 1. Selection objective being targeted
- 2. Heritability of the analyzed trait (h²)
- 3. Accuracy of genetic estimates already available to inform selection decisions
- 4. Genetic correlation between MVP and the trait (r_a)
- 5. Genetic variances and covariances for selection index calculations
- 6. Regression coefficient of phenotype on MBV (b)
- 7. Biological attributes and structure of stud and commercial herds
- 8. Selection intensity of replacement stud sires and bulls for sale (and females)
- 9. Number of calves per exposure
- 10. Type of herd (terminal, maternal)
- 11. Value derived from accelerated genetic progress
- 12. Sector where value is derived and how that is value is shared
- 13. Cost of test, and which animals are being tested
- 14. Planning horizon etc., etc., etc.

? Who are you now wishing had given this talk?

- 1. Wayne
- 2. Alison

P How much would you pay for a DNA test that increases \$index accuracy from 0.25 to 0.5?

- 1. \$0
- 2. **\$1-20**
- 3. **\$20-50**
- 4. \$50-100
- 5. \$100-200
- \$200-500
- 7. >\$500

8. Unable to say with information provided

Case study development

Parameter	Value
Stud Herd	
Number of live yearlings per exposure	0.89
Number of stud females per stud male	30
Number of cows	600
Number of bull calves available for sale/selection	267
Number of bull calves DNA tested	267
Number of stud bulls selected each year	8 (~3%; I = 2.27)
Number of bulls sold for breeding (annual)	125 (~50%; l = 0.8)
Maximum age of stud sire	4 (3 breeding seasons)
Average number of calves per stud sire surviving to	65 (32.5 male; 32.5
sale/selection	female)
Planning horizon	20 years
Discount rate for returns	7%
Commercial Herd	
Maximum age of commercial sire	5 (4 breeding seasons)
Number of commercial females per male	100 (25 per year)

Relative importance of TRAITS IN THE BREEDING OBJECTIVES developed for terminal or self-replacing (maternal) herds targeting either the domestic Australian market where steers are finished on pasture (GRASS), or a high value market where steers are finished on concentrate rations in feedlots (FEEDLOT).

■ Feedlot - terminal ■ Grass - terminal ■ Feedlot - maternal ■ Grass - maternal

% Genetic Variation explained by DNA test

			Criteria	Unit	% Variation
			Birth weight	kg/d	19.5%
			200 Day Growth	kg	9.0%
Objective Trait	Unit	% Variation	400 Day Weight	kg	12.5%
			600 Day weight	kg	15.5%
Sale liveweight –			P8 (♀)	mm	20.5%
direct ^A	kg	15.5%	P8 (♂)	mm	14.0%
Sale liveweight –			RIB (♀)	mm	17.0%
maternal ^a	kg	2.0%	RIB (♂)	mm	11.5%
Dressing %	%	16.5%	Eve Muscle Area		
Saleable meat %	%	28.0%		cm2	13.0%
Fat depth (rump)	mm	20.5%	Eve Muscle Area		
Marbling score	score	19.0%	(⁽)	cm2	13.5%
Cow weaning			Intramuscular Fat	0/	
rate ^A	%	2.5%	(♀)	%	12.5%
Cow survival rate ^A	%	1.5%	Intramuscular Fat		
Cow weight ^A	Kg	20.5%	(ි)	%	6.0%
Calving ease –			Scrotal Size (♂)	cm	19.5%
direct	%	5.0%	Davs to Calving	davs	3 5%
Calving ease –			Mature Cow		
maternal	%	5.0%	Weight	kg	20.5%

Standard deviation of breeding objective (AU\$), selection response (Index σ_i) and improvement (%) over performance recording alone, derived from DNA testing to increase the accuracy of sire selection in a closed seedstock breeding program. Values are unique for the assumptions and seedstock and commercial herd biological parameters modeled in this study.

				GRASS INDEX		FEEDLOT INDEX	
Variable	Unit	Information available	UNA test used	Terminal	Maternal	Terminal	Maternal
SD of							
Breeding	AU\$			31.97	33.35	47.29	54.08
Objective							
SD of			No DNA	16 12	0.67	12.20	10.46
Selection		Performance	test	10.12	9.07	12.20	10.40
index	AU\$	recording	$1/b^2$ of all	21.20	14.60	24.22	21 11
standard		information		(133%)	(4.09)	24.23 (±0.0%)	Z1.44 (±105%)
deviation (σ_i)			u alts	(+33%)	(+32%)	(+39%)	(+105%)

Standard deviation of breeding objective (AU\$), selection response (Index σ_i) and improvement (%) over performance recording alone, accuracy of index derived from DNA testing to increase the accuracy of sire selection in a closed seedstock breeding program.

				GRASS INDEX		FEEDLOT INDEX	
Variable	Unit	Information available	DNA test used	Terminal	Maternal	Terminal	Maternal
SD of							
Breeding	AU\$			31.97	33.35	47.29	54.08
Objective							
SD of			No DNA	16 12	0.67	12.20	10.46
Selection		Performance	test	10.12	9.07	12.20	10.40
index	AU\$	recording	$\frac{1}{6}$ b ² of all	21.38	1/ 60	24 23	21 11
standard		information	/2 II OI all	(1220/)	(1520/)	(1000/)	(11050/)
deviation (σ_i)			แลแร	(+33%)	(+32%)	(+99%)	(+105%)
Accuracy of		Performance	None	.50	.29	.26	.19
		recording	¹ / ₂ h ² of all	07	4.4	F 4	10
Index		information	traits	.07	.44	.51	.40

Value of genetic gain in commercial and stud sires.

A gene flow model was used to assess the economic impact of improved accuracy resulting from the use a DNA marker panel to test all male calves, and select top 3% for stud replacement, and top 50% as sale bulls

			GRASS			FEEDLOT INDEX	
Variable	Unit	Information available	UNA test used	Terminal	Maternal	Terminal	Maternal
SD of Breeding Objective	AU\$			31.97	33.35	47.29	54.08
SD of Selection		Performance	No DNA test	16.12	9.67	12.20	10.46
index standard	AU\$	recording	½ h ² of all	21.38	14.69	24.23	21.44
deviation (σ_i)		information	traits	(+33%)	(+52%)	(+99%)	(+105%)
Accuracy of		Performance	None	.50	.29	.26	.19
Index		recording information	½ h ² of all traits	.67	.44	.51	.40
Value of ΔG in		Records	No DNA test	514	412	388	432
commercial sires selected from top half of stud herd	AU\$/bull	Records + DNA test	½ h ² of all traits	683	623	774	837
Value of ΔG in		Records	No DNA test	29553	17728	22366	19176
stud sires							
selected from	AU\$/bull	Records + DNA	$\frac{1}{2}$ h ² of all	39196	26931	44421	39298
top 3% of stud herd		test	traits	00100	20001		00200

Value of genetic gain on a per test basis – assuming a perfect market

				GRASS		FEEDLOT INDEX	
Variable	Unit	Information available	used	Terminal	Maternal	Terminal	Maternal
SD of Breeding Objective	AU\$			31.97	33.35	47.29	54.08
SD of Selection		Performance	No DNA test	16.12	9.67	12.20	10.46
index standard	AU\$	recording	$1/b^2$ of all traits	21.38	14.69	24.23	21.44
deviation (σ_i)		information		(+33%)	(+52%)	(+99%)	(+105%)
		Performance	None	.50	.29	.26	.19
Accuracy of Index		information	¹ / ₂ h ² of all traits	.67	.44	.51	.40
Value of ∆G in		Records	No DNA test	514	412	388	432
commercial sires selected from top half of stud herd	AU\$/bull	Records + DNA test	½ h ² of all traits	683	623	774	837
Value of ΔG in stud		Records	No DNA test	29553	17728	22366	19176
sires selected from top 3% of stud herd	AU\$/bull	Records + DNA test	¹ / ₂ h ² of all traits	39196	26931	44421	39298
Increased value derived from ΔG in commercial sires	AU\$/ DNA test	(AU\$/ DNA test)	½ h ² of all traits	85	105	193	203
Increased value derived from ΔG in stud sires	AU\$/ DNA test	(AU\$/ DNA test)	1/2 h ² of all traits	289	276	661	603
Total value per test to seedstock operator	AU\$/ DNA test	(AU\$/ DNA test)	¹ / ₂ h ² of all traits	374	381	854	806

. Breakdown of beef industry sector benefits

Traits of direct benefit to the processing sector were assumed to be dressing (DP), saleable meat percentage (SMP), rump fat depth (FD), and marbling score (MS)

Summary points

- Need independent estimates of genetic and phenotypic parameters to determine <u>if it works</u>
- Usefulness will be enterprise-dependent
- Hard to determine <u>value</u> if DNA information is presented independently of genetic evaluations
- From an industry wide perspective DNA testing could be beneficial, but the commercial viability will strongly depend on price signaling throughout the production chain.

Acknowledgements

- Mike Goddard
- Julius van der Werf
- Steve Barwick
- Wayne Upton
- Jennie Pryce
- Ben Hayes
- USDA National Research Initiative (\$)

The end

North West, Tasmania