

Value of DNA information for beef bull selection

A.L. Van Eenennaam¹, J.H. van der Werf², M.E. Goddard³

¹ Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis

² University of New England Armidale, NSW, Australia

³ Victorian Department of Primary Industries and University of Melbourne, VIC, Australia

Objective

Estimate the value of using DNA test information to increase the accuracy of beef bull selection in a seedstock breeding program

- The expected returns from using a commercial sire sourced from a seedstock herd using DNA testing
- Additionally, the value of marker information in the selection of replacement stud males to be mated in a seedstock breeding program was also estimated.

The following seedstock operation was modeled

Parameters	Value
Number of stud cows	600
Number of bulls calves available for sale/selection	267 (all get tested with DNA test)
Number of stud bulls selected each year	8 (~3%; i = 2.27)
Number of bulls sold for breeding (annual)	125 (~50%; i = 0.8)
Maximum age of commercial sire	5 (4 breeding seasons)
Commercial cow:bull ratio	25
Number of commercial females	9225
Planning horizon	20 years
Discount rate for returns	7%
Number of live stud calves available per exposure	0.89
Stud cow:bull ratio	30
Cull for age threshold of cow	10
Age structure of breeding cow herd (2-10 yr)	0.2, 0.18, 0.17,0.15, 0.12, 0.09, 0.05, 0.03, 0.01
Bull survival (annual)	0.8
Age structure of bulls in stud herd (2-4 yr)	0.41, 0.33, 0.26
Age structure of bulls in commercial herd (2-5 yr)	0.34, 0.27, 0.22, 0.17

EXAMINED 4 BREEDING OBJECTIVES: PROFIT DRIVERS

Materials and methods

- Selection index theory was used to predict the potential benefit of including DNA information in selection decisions.
- Information from DNA test information was modeled as a molecular breeding value (q_i) explaining a proportion (ρ) of the additive genetic variance (σ_{ai}^2) in trait i; $V_{qi} = \rho . \sigma_{ai}^2$, as described by Lande and Thompson (1990).

DEVELOPED TEST USING 2500 RECORDS ON CORRELATED TRAIT PERFORMANCE RECORDS

Selection Criteria	<u>Heritability</u>
Birth weight	0.39
200 d Weight	0.18
400 d Weight	0.25
600 d Weight	0.31
P8 fat	0.41
RIB fat	0.34
Eye Muscle Area	0.26
Intramuscular Fat	0.25
Scrotal Size	0.39
Days to Calving	0.07
Mature Cow Weight	0.41

Van Eenennaam WGCALP 2010

Effect of trait heritability on theoretical proportion of trait genetic variation explained by DNA tests trained in populations of 1000 (\blacktriangle) or 2500 (\bullet) individuals with phenotypic observations*.

* Effective population size (N_e) = 100, length of bovine genome (L) = 30 M, effective number of loci (M_e) = 2NeL, and a normal distribution of QTL effects were assumed. Derived from the formula of Goddard (2009).

Materials and methods (continued)

- Indexes were constructed and index accuracies were calculated when information source included DNA test information from one of the two DNA panels **and** performance recording, over that derived from performance recording alone.
- Discounted gene flow methodology (Hill, 1974) was used to calculate the value derived from the use of superior bulls selected using DNA test information **and/or** performance recording. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator.

Animal Biotechnology and Genomics Education

Variable	Unit Informa availa	Information	GRAS	s Index	FEEDLOT INDEX	
Variable		available	<u>Terminal</u>	Maternal	<u>Terminal</u>	<u>Maternal</u>
Accuracy of the index	r	Performance Records	.50	.29	.26	.19
	Records + DNA test	.58	.35	.32	.27	

Animal Biotechnology and Genomics Education

Results

Value of genetic improvement (AG) per bull derived from performance recording and DNA testing to increase the accuracy of COMMERCIAL BULL selection in a closed seedstock breeding program

Variable	Unit	Information available	Gras	s Index	FEEDLOT INDEX	
			<u>Terminal</u>	Maternal	<u>Terminal</u>	<u>Maternal</u>
Value of ∆G in commercial	٨١١٣	Performance Records	301	318	245	345
selected from top half of stud herd	/bull	Records + DNA test	363	396	306	480

Most of the value from DNA testing for the Feedlot indexes was derived by the processing sector (i.e. Dressing %, Saleable meat %, Marbling score)

Value of genetic improvement (ΔG) per bull derived from performance recording and DNA testing to increase the accuracy of SEEDSTOCK BULL selection in a closed seedstock breeding program

Variable	Unit	Information available	GRAS	s Index	FEEDLOT INDEX	
			<u>Terminal</u>	Maternal	<u>Terminal</u>	Maternal
Value of ΔG in stud sires selected	AU\$ /bull	Performance Records	17899	15922	14579	16751
from top half of stud herd		Records + DNA test	21617	19724	18211	23110

COMBINED VALUE PER DNA TEST

Variable	Unit	Information available	GRAS	s Index	FEEDLOT INDEX	
			<u>Terminal</u> <u>Maternal</u> <u>T</u>		Terminal	<u>Maternal</u>
Increased value derived from ∆G in commercial sires	AU\$/ DNA test	Records + DNA test	31	39	30	67
Increased value derived from ∆G in stud sires	AU\$/ DNA test	Records + DNA test	111	114	109	191
Total value per test to seedstock operator	AU\$/ DNA test	Records + DNA test	143	153	139	258

VALUE DERIVED PER DNA TEST ASSUMING A PERFECT MARKET

		Information	GRASS INDEX		FEEDLOT INDEX	
Variable	Unit	available	Terminal	Maternal	Terminal	Maternal
Selection response	%	Performance records	285		*)	.+
from DNA testing		Records + DNA test	20%	26%	24%	41%
Value of ΔG in	(AU\$/	Performance records	301	318	245	345
from top half of stud herd	bull)	Records + DNA test	363	396	306	480
Value of ΔG in stud sires	(AU\$/ bull)	Performance records	17899	15922	14579	16751
selected from top 3% of stud herd		Records + DNA test	21617	19724	18211	23110
Increased value derived	(AU\$/	Performance records		(41)	¥1	8
from DNA testing commercial sires	DNA test)	Records + DNA test	31	39	30	67
Increased value derived	(AU\$/ DNA test)	Performance records		14.3	*	(1
from DNA testing stud		Records + DNA test	111	114	109	191
Total value per DNA test	(AU\$/ DNA test)	Performance records		242		
to seedstock operator		Records + DNA test	143	153	139	258

To determine the value of a multi-trait DNA test you need to know

- 1. Selection objective being targeted
- 2. Heritability of the analyzed trait (h²)
- 3. Accuracy of genetic estimates already available to inform selection decisions
- 4. Genetic correlation between MVP and the trait (r_q)
- 5. Genetic variances and covariances for selection index calculations
- 6. Regression coefficient of phenotype on MBV (b)
- 7. Biological attributes and structure of stud and commercial herds
- 8. Selection intensity of replacement stud sires and bulls for sale (and females)
- 9. Number of calves per exposure
- 10. Type of herd (terminal, maternal)
- 11. Value derived from accelerated genetic progress
- 12. Sector where value is derived and how that is value is shared
- 13. Cost of test, and which animals are being tested
- 14. Planning horizon etc., etc., etc.

Van Eenennaam WGCALP 2010

Animal Biotechnology and Genomics Education

Implications

- Value of DNA testing will be enterprise dependent
- DNA information clearly has the potential to provide value to seedstock producers if it is meaningfully incorporated into national cattle evaluations
- It is difficult to make optimal selection decisions or even estimate the value of multi-trait DNA tests in the absence of information on their accuracy, and the incorporation of their target traits into breeding objectives and selection index calculations
- This will likely require the development of multi-trait selection indexes for breeding objectives of relevance to U.S. beef production systems.

Acknowledgements

CoAuthors:

Dr. Mike Goddard

Dr. Julius van der Werf

The authors thank Steve Barwick from the Animal Genetics and Breeding Unit of the University of New England for providing selection index economic parameters, Ben Hayes and Jennie Pryce from the Victorian Department of Primary Industries, Australia for helpful discussions.

This project was supported by National Research Initiative competitive grant no. 2009-55205-05057 ("Integrating DNA information into beef cattle production systems") from the USDA National Institute of Food and Agriculture Animal Genome Program.

