

"Beef Cattle Industry Structure: Implications for whole genome selection"

Alison Van Eenennaam, Ph.D.

Animal Biotechnology and Genomics Extension Specialist Department of Animal Science University of California, Davis USA (530) 752-7942 alvaneenennaam@ucdavis.edu

http://animalscience.ucdavis.edu/animalbiotech/

Should you use this bull?

Animal Biotechnology and Genomics Education

Selection criteria – informal survey!

- Only if he looks right
- Only if he has marbling
- Only if he has the right DNA
- Only if he has the right pedigree

The basis of selection is the resemblance between relatives

What you would really like to know is the future performance of his unborn calves!!

Should you use this bull?

What if I told you these calves belonged to the bull?

What if I told you these were his daughters' calves?

Animal breeders use records of an animals own performance and that of its relatives to predict an animal's genetic merit or

ESTIMATED BREEDING VALUE (EBV)

Challenge for breeders is to identify those individuals that have the best breeding values at a young age

 $\Delta G = intensity of selection X$

accuracy of identifying the good ones X

genetic variation in the population /

generation interval

How can I increase my accuracy of identifying the good ones?

- Records, records, records (BREEDPLAN)
- Treating all animals in a group the same

■ DNA testing???

What is a Genetic Marker?

A DNA sequence variation that has been associated with a given trait in one or more populations

Animal Biotechnology and Genomics Education

There are DNA-markers for simple traits

- DNA test result is highly predicitive
 - Coat color
 - Polled/horned staus
 - Certain genetic diseases (e.g. "curly calf")
 - SCD (Prescribe Genomics, \$90 per test)
 - "Exon 5" (Prescribe Genomics, \$100/test)

Wagyu-specific DNA-makers

SCD - Stearoyl-CoA desaturase (AA, VA, VV)

- "the percentage of beef that is "not delicious" has increased as a result of increased fat of a high melting temperature
- ~ 18 % AA, 74% VA, 8% VV

Exon 5 – growth hormone (AA,AB,BB,BC,CC)

- Only found in Wagyu,
- Purportedly associated with marbling
- No more information on frequency

An increasing number of companies are starting to offer DNA tests for production traits

DNA-markers for production traits

 DNA test result may or may not be highly predictive of genetic merit

<--Return to the NBCEC Site

ome Background Sample Populations Marker-Assisted Selection Glossary

Commercial genetic test validations

Overview Pfizer Animal Genetics (Bovigen) IGENITY MMI Genomics Ancillary Results

Summary of NBCEC validations for commercially-available DNA-tests for complex (quantitative or multigenic) traits in beef cattle (note: validations do not include tests for "simple" traits such as coat color, horned/polled, AM status etc.)

Company	Test Name	Trait	Date of validation
Igenity	Profile [®]	Fat Thickness	12/2008
www.igenity.com	Profile®	Marbling Score	12/2008
	Profile®	Quality Grade (% ≥ Choice)	12/2008
	Profile [®]	Rib Eye Area	12/2008
	Profile [®]	Yield Grade	12/2008
	Profile®	Average Daily Gain	12/2008
	Profile®	<u>Tenderness</u>	12/2007
	Profile [®]	Residual Feed Intake (RFI) (for Bos indicus influenced cattle)	12/2007
	Profile [®]	Residual Feed Intake (RFI) (for Bos taurus cattle)	6/2008
	Profile [®]	Dry matter intake (DMI) (for Bos indicus influenced cattle)	12/2007
	Profile [®]	Heifer Pregnancy Rate	
	Profile [®]	Stayability (longevity)	
	Profile [®]	Maternal Calving Ease	
	Profile [®]	<u>Docility</u>	
Pfizer Animal Genetics (Bovigen)	GeneSTAR® Tenderness MVP	<u>Tenderness</u>	2/2009
www.bovigen.com	GeneSTAR® Marbling MVP	% IMF (Feedlot cattle)	2/2009
	GeneSTAR® Feed Efficiency MVP	Net Feed Intake (NFI)	2/2009
MMI genomics www.metamorphixinc.com	Tru-Marbling™	Marbling Score and Quality Grade	
	Tru-Tenderness™	Tenderness	

the value to their own businesses from an investment in the particular panel of DNA markers.

Those decisions very much depend on the individual business' attitude to risk and can only be made effectively by the individual business.

It is possible that the panel of markers has also been independently evaluated in North American herds by the US National Beef Cattle Evaluation Consortium, so for further information on the size and direction of effect of the markers in those populations, please visit http://www.ansci.comell.edu/nbcec/

Pfizer Gene Star results

Pfizer interpretation

Join the Forum Now! ▶

Quick Links

- Meat & Livestock Australia (MLA)
- University of New England (UNE)
- Victoria DPI
- " QDPI&F
- " NSW DPI
- University of Adelaide
- South Australian Research and Development Jostitute (SARPU)

Genetic variation explained by DNAtests that have been independently assessed by AGBU in Australia.

Population	IMF%	MSA Marble Score	SF (kg)	NFI (kg)
1. Bos taurus	0.3%	1.7%	2.9%	6.2%
2. Bos indicus	0.4%	0.9%	8.0%	5.4%
3. Bos taurus x Bos indicus	0%	0%	1.6%	0%
4. Bos indicus X Brahman	1.5%	3.6%	29.9%	0%

It seems appropriate that the application of DNA testing to beef cattle production is undergoing an evolutionary process....

The bovine genome is similar in size to the genomes of humans, with an estimated size of 3 billion base pairs.

Human & cattle genomes are 83% identical

Whole genome-assisted selection (WGS)

- The sequencing of the bovine genome allowed for the development of a 50,000 marker chip!
- Can simultaneously test 50,000 markers

Whole-genome selection

Application of WGS in Dairy Cattle Has Been Successful

 r_0

➤ Validation:

New Progeny Tested Bulls

5000 Progeny Tested Bulls

 r_1

Application:

New Sire Candidates

The beef cattle industry is different to dairy!

- Little use of AI
- Relatively few high accuracy sires for training
- Multiple competing selection goals cow/calf, feedlot, processor – little data sharing between sectors
- Few/no records on many economically-relevant traits
- Crossbreeding is important
- Many different breeds

Whole genome selection in **US** beef cattle industry

Validation: 2,000 Bull Project

Training populations:

- US Meat Animal Research Center population
- Angus AI sires
- DNA Testing Companies

Application:

Seedstock Breeders

Validation: Purpose is to estimate how predictive DNA tests are in different breeds

P	•	Angus	402	N. S.	•	Brangus	68
4	•	Hereford	317		•	Beefmaster	64
-	•	Simmental	253	W.	•	Maine-Anjou	59
	•	Red Angus	173		•	Brahman	53
-	•	Gelbvieh	136		•	Chiangus	47
	•	Limousin	131		•	Santa Gertrudis	43
2	•	Charolais	125		•	Salers	42
-	•	Shorthorn	86	The second	•	Braunvieh	27

Animal Biotechnology and Genomics Education